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Abstract Model-Driven Engineering (or MDE) is an emerging approach
for system development which refers to the systematic use of models as
primary engineering artifacts throughout the engineering lifecycle. MDE
puts emphasis on bridges between di�erent working contexts and on
the integration of bodies of knowledge di�erently developed. We discuss
the mutual advantages that the integration of MDE and Abstract State
Machines (ASMs) would provide: MDE can gain rigour and preciseness,
while ASMs get a standard abstract notation and a general framework
for a wide tool interoperability.

Introduction

Model-driven Engineering (MDE) [12] is an emerging approach for software de-
velopment and analysis where models play the fundamental role of �rst-class ar-
tifacts. Metamodelling is a key concept of the MDE paradigm and it is intended
as a modular and layered way to endow a language or a formalism with an ab-
stract notation, so separating the abstract syntax and semantics of the language
constructs from their di�erent concrete notations. Furthermore, metamodelling
allows to settle a �global framework� to enable otherwise dissimilar languages
(of possibly di�erent domains, the so called Domain-speci�c languages) to be
used in an interoperable manner in di�erent technical spaces, namely working
contexts with a set of associated concepts, knowledge, tools, skills, and possi-
bilities. Indeed, it allows to establish precise bridges (or projections) among the
metamodels of these di�erent domain-speci�c languages to automatically exe-
cute model transformations.

To achieve the goal of a global interoperability and merging of bodies of
knowledge with rigor and preciseness, an integration of the MDE paradigm with
formal methods is necessary [23].

This is a position paper mainly aimed at explaining the feasibility and the
advantages of the proposed integration in the context of the Abstract State
Machines (or ASMs).

We strongly believe that applying the MDE approach to ASMs is worthwhile
at least for the following ten reasons, later discussed: (R1) to have a standard
abstract notation as uni�ed representation of ASM concepts independent of any
particular implementation platform; (R2) to have a graphical representation of



ASMs also useful for teaching purposes; (R3) to have an interchange format
among ASM tools; (R4) to have standard libraries and APIs to use in new or
existing tools and programs; (R5) to automatically derive a family of languages,
visual/textual notations and their parsers; (R6) to allow tool interoperability;
(R7) to help the integration of existing tools; (R8) to help the development of new
tools; (R9) to export ASMs to other environments and permit the integration
with other specialized external notations and tools (for instance for property
veri�cation and testing); and last but not least, (R10) to complement the MDE
with a formal approach.

The overall goal of our project is to develop a uni�ed abstract notation for
ASM and a general framework for a wide interoperability and integration of
tools around ASMs. We started by de�ning the AsmM, a metamodel for ASMs,
in [28,10]. We have, therefore, developed the ASMETA framework [10] as an
instantiation of the metamodelling framework for ASMs, to create and handle
ASM models exploiting the advantages o�ered by the metamodelling approach
and its related facilities (in terms of derivatives, libraries, APIs, etc.). ASMETA
provides a global infrastructure for interoperability of ASM application tools
(new and existing ones) including ASM model editors, ASM model repositories,
ASM model validators, ASM model veri�ers, ASM simulators, ASM-to-Any code
generators, etc.

Each reason stated above may not su�ce to justify the e�ort of developing a
complex metamodel as AsmM, but we hope that all together will convince even
the most skeptical reader that the application of the MDE approach to ASMs
is worthwhile. Note that not only ASMs would bene�t from this approach: we
expect that new synergies arise and that the cooperative interaction among
ASMs and MDE creates an enhanced combined e�ect - as outlined in R10.

R.1 To have a standard abstract notation

The success of the ASM as a system engineering method able to guide the
development of hardware and software systems, from requirements capture to
their implementation, is nowadays widely acknowledged [14]. The increasing ap-
plication of the ASMs for academic and industrial projects has caused a rapid
development of tools for ASM model analysis, namely simulation, property veri�-
cation, and test generation. Among these tools we can cite AsmGofer [43], AsmL
[8], Xasm [50], TASM [45], ASM workbench [15,49], CoreASM [18], ATGT [11]
and other tools based on model checkers and theorem provers [25,49,26,42,20].

To encode ASM models, each tool uses a di�erent syntax strictly depending
on the implementation environment (C for XASM, Gofer for AsmGofer, .NET
for AsmL, etc.), adopts a di�erent internal representation of ASM models, and
provides proprietary constructs which extend the basic mathematical concepts
of ASMs. There is no agreement around a common standard ASM language.
The result is that a practitioner willing to use an ASM tool needs to know its
own syntax and that most ASM researchers still use their own ASM notation,
normally not de�ned by a grammar but in terms of mathematical concepts.



Moreover, due to the lack of abstractness of the tool languages, the process of
encoding ASM models is not always straightforward and natural, and one needs
to map mathematical concepts, like ASM states (namely universes and functions
de�ned on them), into types and structures provided by the target language.

To achieve the goals of developing a uni�ed abstract notation for ASM, a
notation independent from any speci�c implementation syntax and allowing a
more direct encoding of the ASM mathematical concepts and constructs, and
tackling the problem of ASM tool interoperability and integration, we exploited
the metamodelling approach suggested by the MDE.

According to the MDE terminology, a metamodel de�nes the abstract syn-

tax of a language, i.e. the structure of the language, separated from its concrete
notation. A metamodel-based abstract syntax de�nition has the great advan-
tage of being suitable to derive from the same metamodel (through mappings
or projections) di�erent alternative concrete notations, textual or graphical or
both, for various scopes like graphical rendering, model interchange, standard
encoding in programming languages, and so on. Therefore, a metamodel could
serve as standard representation of a formal notation, establishing a common
terminology to discriminate pertinent elements to be discussed, and therefore,
helps to communicate understandings, especially if � as in the case of ASMs � the
formal method is still evolving and the community is too much heterogeneous to
easily come to an agreement on an unique textual notation. Note that the goal
of achieving a standrad and lean syntax for ASM speci�cations is shared with
the CoreASM project [18].

In [28,10], a complete metamodel for ASMs is presented. As MDE frame-
work, we adopted the OMG's metamodelling platform. The AsmM (Abstract
State Machines Metamodel) results into class diagrams developed using the MOF
(the OMG's metalanguage to de�ne metamodels) modelling constructs (classes,
packages, associations). We developed the metamodel in a modular and bottom-

up way. We started separating the ASM static part represented by the state,
namely domains, functions and terms, from the dynamic part represented by
the transition system, namely the ASM rules. Then, we proceeded to model Ba-
sic ASMs, Turbo ASMs, and Multi-Agent (Sync/Async) ASMs, so re�ecting the
natural classi�cation of abstract state machines.

The complete metamodel is organized in one package called ASMETA, which
is further divided into four packages as shown in Fig. 1. Each package covers
di�erent aspects of ASMs. The dashed gray ovals in Fig. 1 denote the packages
representing the notions of State and Transition System, respectively.

The Structure package de�nes the architectural constructs (modules and
machines) required to specify the backbone of an ASM model. The Definitions
package contains all basic constructs (functions, domains, constraints, rule dec-
larations, etc..) which characterize algebraic speci�cations. The Terms pack-
age provides all kinds of syntactic expressions which can be evaluated in a
state of an ASM. The TransitionRules package contains all possible transi-
tion rules schemes of Basic and Turbo ASMs. All transition rules derived from



Figure 1. Package structure of the ASM Metamodel

basic and turbo ones (e.g. the case-rule and the while-rule) are contained in the
DerivedTransitionRules package.

Each class of the metamodel is equipped with a set of relevant constraints,
OCL (version 2.0 [34]) invariants written to �x how to meaningfully connect
an instance of a construct to other instances, whenever this cannot be directly
derived from the class diagrams. All OCL constraints have been syntactically
checked by using the OCL checker OCLE [36].

In order to make AsmM able to support the languages of existing ASM tools,
we have enriched the metamodel with particular forms of domains, special terms
and derived rule schemes taken from these languages (see [28] for details). We
have borrowed some extended terms including conditional terms and comprehen-
sion terms from ASM-SL, maps, sets and sequences from AsmL. Named rules
with parameters (RuleDeclaration) appear in ASM-SL, while the concepts of
submachine computation, iteration, and recursion, modelled in the AsmM re-
spectively by the classes SeqRule and IterateRule, can be found in XASM as
well as in AsmL (with an Object Oriented style, though). The agent represen-
tation in the AsmM is similar to the agents of AsmGofer, although Agents is
an abstract domain in our metamodel, while Agent is a integer domain in As-
mGofer. In Sect. R.9, we clarify how the metamodel is able to capture all all
forseeable features of a possible ASM language; therefore, AsmM can be used as
standad reference syntax.

R.2 To have a graphical abstract notation

People often claim that formal methods are too di�cult to put in practice due
to their mathematical-based foundation. In this direction an abstract and visual



representation1, like the one provided by a MOF-compliant metamodel, delivers
a more readable view of the modelling primitives o�ered by a formal method, es-
pecially for people, like students, who do not deal well with mathematics but are
familiar with the standard MOF/UML. Therefore, the AsmM can be considered
a complementary approach to [14] for the presentation of ASMs.

We here give evidence of how the metamodel can be useful to introduce
ASMs. We present only a very small fragment of the AsmM whose complete
description can be found in [28,10].

Fig. 2 shows the backbone of a basic ASM. An instance of the root class
Asm represents an entire ASM speci�cation. According to the working de�nition
given in [14], a basic ASM has a name and is de�ned by a Header (to establish
the signature), a Body (to de�ne domains, functions, and rules), a main rule,
and a set of initial states (instances of the Initialization class). Executing
a basic ASM means executing its main rule starting from one speci�ed initial

state, i.e. the one denoted by the association end defaultInitialState.

The composite relationships between the class Asm (the whole) and its com-
ponent classes (the parts) assures that each part is included in at most one Asm
instance.

Figure 2. Backbone

An ASM without a main rule and without a set of initial states (see the
multiplicity of association ends mainRule and initialState) is called module2

which is useful to syntactically structure large speci�cations.

The Header (see Fig. 3) consists of some import clauses and an optional
export clause to specify the names which are imported from or exported to
other ASMs (or ASM modules), and of its signature containing the declara-

tions of the ASM domains and functions. Every ASM is allowed to use only

1 It should be noted that the visual representation for the (abstract) syntax of the
language has not to be confused with a possible graphical notation for ASM speci-
�cations, which we refer to in Sect. R.5.

2 This de�nition of module di�ers slightly from the module concept outlined in Chap.
2 of [14]; but, it has been accorded with the authors.



Figure 3. Header

Figure 4. Body

identi�ers (for domains, functions and transition rules) which are de�ned within
its signature or imported from other ASMs or ASM modules.

The initialization of an ASM consists of a set of initial states. The class
Initialization (not described here, see [28,10] for details) models the notion
of an initial state. All possible initial states are linked (see Fig. 2) to an ASM
by the association end initialState and one initial state is elected as default
(see the association end defaultInitialState).

The Body (see Fig. 4) of an ASM consists of (static) domain and (static/de-
rived) function definitions according to domain and function declarations in
the signature of the ASM. It also contains declarations of transition rules

and de�nitions of axioms for constraints one wants to assume for some domains,
functions, and transition rules of the ASM.

R.3 To have an interchange format

The interoperability among ASM tools can be (at least partially) achieved by a
common interchange format. The work in [7] represents the �rst and the only



attempt in this respect; it was based on the use of a pure XML format and
unfortunately it has never been completed.

Whenever a language or formalism is speci�ed in terms of a MOF-compliant
metamodel, the MOF enables a standard way to generate an XMI (XML Meta-
data Interchange) [34] interchange format for models in that language. The main
purpose of XMI is to provide an easy interchange of data and metadata between
modelling tools and metadata repositories in distributed heterogeneous envi-
ronments. The XMI format is not for human consumption and it is not to be
confused with the �concrete syntax� used by modelers to write their models.
It has to be intended, instead, as an e�ective hard code to be automatically
generated for interchanging purposes only.

To tackle the problem of ASM tool interoperability, we exploit the mechanism
of deriving a speci�c XMI format from the metamodel. The ASM-XMI format,
given as XML document type de�nition �le (commonly named DTD), has been
generated automatically from the AsmM in the MDR framework. First, we have
drawn the AsmM with the Poseidon UML tool (v. 4.2) and saved it in the
UML-XMI format. Then, we have converted it to the MOF 1.4 XMI by means
of the UML2MOF transformation tool provided by the Netbeans MDR project.
Finally, we have loaded the MOF model in the MDR framework of Netbeans and
according to the rules speci�ed by the MOF 1.4 to XMI 1.2 mapping speci�cation
[51], the DTD for AsmM models was generated.

In Section R.6 we discuss the role of the ASM-XMI format for interchanging
ASM models among tools.

R.4 To have standard libraries

Applications and tools endowed with MOF-compliant metamodels, can have
their Java Metadata Interface (JMI) [32] automatically generated. The JMI
standard is based on the MOF 1.4 speci�cation and de�nes a Java applica-
tion program interface (API) for the creation, storage, access and manipulation
of metadata in a MOF-based instance repository.

From the AsmM in the MDR framework we also automatically generate a
JMI library for AsmM models (see [28] for more details). JMI can be used in
client programs written in Java which want to manipulate ASM models (to read
model structure, to modify parts of the speci�cation and create new elements),
as well as by tool developers to speed up the creation of new tools supporting
ASMs. In Sections R.6, R.7, R.8 we show how the JMI can be useful for tool
interoperability, integration of existing tools, and development of new tools.

Besides the XMI and JMI libraries already discussed, other libraries can
be developed from MOF-compliant metamodels to provide additional facilities.
Among them, we mention CMI (CORBA Metadata Interface) [17] for bridging
with the middleware CORBA space.



R.5 To derive concrete notations and their parsers

A MOF-compliant metamodel allows to derive di�erent alternative concrete no-
tations, textual or graphical. Initially, we investigated the use of tools like HUTN
(Human Usable Textual Notation) [31] or Anti- Yacc [19] which are capable of
generating text grammars from speci�c MOF-based repositories. Nevertheless,
we decided not to use them since they do not permit a detailed customization
of the generated language and they provide concrete notations merely suitable
for object-oriented languages. There are better MOF-to-grammar tools now, like
xText [22] of OpenArchitectureWare or TCS of AMMA [3], which we may con-
sider to adopt in the future.

In [27] we de�ne general rules on how to derive a context-free EBNF (Ex-
tended Backus-Naur Form) grammar from a MOF-compliant metamodel, and
we use these mapping rules to de�ne an EBNF grammar from the AsmM for an
ASM textual notation. The resulting language, called AsmetaL3, is completely
independent from any speci�c platform and allows a natural and straightforward
encoding of ASM models. We design AsmM without any speci�c implementation
platform in mind. The language derived from it does not contain any platform-
dependent concept. Instead, the language of CoreASM explicitly contains direc-
tives for importing plug-ins written in Java, and the AsmL permits the use of
the Microsoft .NET library.

In [27], we also provide guidance on how to assemble a JavaCC �le given
in input to the JavaCC parser generator [2] to automatically produce a parser
for the EBNF grammar of the AsmetaL. This parser is more than a grammar
checker: it is able to process ASM models written in AsmetaL, to check for their
consistency w.r.t. the OCL constraints of the metamodel, and to create instances
of the AsmM in a MDR MOF repository through the use of the AsmM-JMIs.

The complete AsmetaL grammar is reported in [28] and is also available in
[10] together with the AsmetaL parser.

We have validated the metamodel and the AsmetaL notation to asses their
usability and capability to encode ASM models. To this purpose, we have asked
to a non ASM expert to port some speci�cations from [14] and other ASM case
studies to AsmetaL. The task was completed within three man-months.

Up to now we have about 140 ASM speci�cations encoded in AsmetaL and
available in [10]. We are strongly con�dent that AsmetaL satis�es all the desired
requirements of expressivity, abstractness and easiness of use.

Note that concrete notations derived from metamodels can be also graphical.
For instance, the Eclipse Graphical Modeling Framework (GMF) [4] provides a
generative component and runtime infrastructure for developing graphical edi-
tors based on Eclipse Modelling Framework (EMF) [1] and the eclipse Graphical
Editing Framework (GEF). The GMF follows a novel approach which suggests
to derive modelling tools, like graphical model editors, from metamodels [35].

3 A preliminary version of the AsmetaL language can be found in [41], under the name
of AsmM-CS (AsmM Concrete Syntax).



R.6 To allow tool interoperability

The existing ASM tools for model validation and veri�cation, have been devel-
oped by encoding an ASM formal model into the language of the implementation
environment and exploiting the computation engine and validation/veri�cation
algorithms and techniques of the implementation system to compute ASM runs
and prove properties. Since each tool usually covers well only one aspect of the
whole system development process, at di�erent steps modelers and practitioners
would like to switch tools to make the best of them while reusing information
already entered about their models. However, ASM tools are loosely coupled
and have syntaxes strictly depending on the implementation environment. This
makes the integration of tools hard to accomplish and prevents ASMs from being
used in an e�cient and tool supported manner during the software development
life-cycle. Therefore, a way to support tools interoperabilty is of great interest
for the ASM community and can be achieved by the combination of standards
like MOF, XMI (R.3), and JMIs (R.4).

Basically, all ASM artifacts/tools can be classi�ed in: generated, based, and in-
tegrated. Generated artifacts/tools are derivatives obtained (semi-)automatically
by applying to the AsmM metamodel appropriate projections from MOF to the
technical spaces Javaware, XMLware, and grammarware. Based artifacts/tools
are those developed exploiting the AsmM metamodel and related derivatives.
Finally, integrated artifacts/tools are external and existing tools that are con-
nected to the ASM metamodelling environment.

Fig. 5 shows a scenario of interoperability among ASM tools as suggested by
our approach. Generated/based tools (like Tool A in the �gure) can access ASM
models through the APIs (like the AsmM JMIs) in a MOF repository (like the
SUN MDR [5]) where ASM models reside. They can also exchange ASM models
in the XML/XMI standard format: a XMI reader and writer provided by MDR
can be used to load/save an ASM model from/into a XML �le.

Integrated tools can interoperate in di�erent ways. Some tools (like Tool B
in the �gure) can exchange ASM models in the XML/XMI standard format and
verify their validity with respect to the given AsmM XMI DTD. Tool providers
only need supply their tools with appropriate plug-ins capable of importing
and/or exporting the XMI format for the AsmM (by using XMI readers/writers).
Other tools (like Tool C in the �gure) may keep their input data formats: in this
case walkers must be developed to translate ASM models from the repository
to the tool proprietary formats. Mixed approaches are also possible, as the one
adopted in modifying the ATGT tool, as explained in Section R.7.

A modeler can also start writing her/his ASM speci�cation in AsmetaL and
then, through the connection to the repository provided by the parser, transform
it, for example, into the XMI interchange format.

R.7 To help the integration of existing tools

We here discuss how we modi�ed the ATGT tool [11] in order to make it AsmM-
compliant. ATGT takes an ASM speci�cation (written using the AsmGofer syn-



Figure 5. ASM model interchange through XMI and APIs

tax) and produces a set of test predicates, translates the original ASM speci-
�cation to Promela (the language of the model checker SPIN used to generate
tests), and generates a set of test sequences by exploiting the counter example
generation of the model checker.

Figure 6. Adapting ATGT to the AsmM

ATGT is written in Java. It already (see Fig. 6) has its own parser for As-
mGofer �les, which reads a speci�cation and builds an internal representation
of the model in terms of Java objects. The tool functionalities are delegated to
three components (Test predicate generator, Tests generator, ASM to Promela)
which read the data of the loaded ASM speci�cation and perform their tasks.

In our approach, ATGT keeps its own data structures to represent the ASM
models and other information necessary for the services it provides. In this way



we do not modify the three most critical components, which continue to process
data in the old representation.

To make ATGT capable of reading AsmM models, we �rst added a new com-
ponent, the JMI/XMI reader, which is automatically derived from the metamodel
by using MDR Netbeans. This JMI/XMI reader parses a XMI �le containing the
ASM speci�cation the user wants to load and produces the JMI objects repre-
senting the loaded ASM. Then we added a module, called JMI queries, which
queries those JMI objects and builds the equivalent model in terms of ATGT
internal data. The JMI queries are very similar to the AsmGofer parser already
in ATGT, except that they read the information about the ASM model from
JMI data instead of a �le.

Although we did not exploit the power of the metamodel inside ATGT and
we simply made ATGT AsmM-compliant, the result is worthwhile and the e�ort
is limited: adding this new feature to ATGT required about two man-months.
If we started today from scratch to develop ATGT, we would use directly JMI
to represent ASM models, since JMI o�ers a stable and clean interface that is
derived from the metamodel (see Sect. R.4). The use of JMI would avoid the
burden of writing internal libraries for representing ASM models. For this reason,
we have started working on making the internal representation of ASM models
that ATGT adopts equivalent to the JMI, in order to eventually integrate JMI
directly in ATGT (work in progress in Fig. 6).

Further advances in the MDE direction [13] would be replacing the ASM to
Promela and the AsmGofer parser components by model transformations from
the AsmM (as pivot metamodel, see Sect. R.9) to Promela metamodel and from
Gofer metamodel to the AsmM, provided that such metamodels for Promela and
Gofer (linked to their concrete syntax) exist.

R.8 To help the development of new tools

MDE helps developers to build new tools by providing an interchange format
(R.3), standard libraries (R.4) and several possible maps to concrete syntaxes
and parsers (R.5). By exploiting these technologies, a developer who is interested
in developing a new tool for ASMs, does not need to write a parser, an internal
representation of ASMs and an interchange format (if he/she wishes to export,
import �les from other tools). In particular, the development of a grammar can
be very time consuming and error prone - specially if one wants to be able to
read complete ASM speci�cations. Internal representations of ASMs are normally
bound to the parser which is being de�ned, and a small change in the parser
may require an update of the internal libraries and refactoring of the code. All
these tasks can require a good deal of time and e�ort, although they are not
relevant for the particular technique or algorithm being developed. In the MDE
approach, the developer needs to understand the metamodel (for example by
reading its graphical representation - R.2) and then focus on the functionalities
he/she intend to support with the new tool.



For instance, we have developed a general-purpose ASM simulation engine

[29,10], called AsmetaS, to make AsmM models executable. This tool is an ex-
ample of Tool A (see Fig. 5) since essentially it is an interpreter which navigates
through the MOF repository where ASM models are instantiated (as instances
of the AsmM metamodel) to make its computations. We do not have to deal
with basic functionalities such as parsing, abstract syntax trees, type checking,
etc., since they are already provided by the MOF-environment. We have focused
the development on those classes necessary to simulate an ASM, and the con-
struction of the update set has required only the de�nition of the class UpdateSet
representing an update set and the class UpdateSetBuilder building an update
set. UpdateSetBuilder introduces a method UpdateSet m(R r) which, for every
class R representing a rule, builds the update set for the rule r of class R.

The architecture of this interpreter is very simple and consists in only 20
classes. It also allows a modular and incremental development. A �rst prototype
(available at [10]) has been developed in only three man months and is able
to interpret basic, turbo without submachine calls, and synchronous multiagent
ASMs.

R.9 To integrate ASMs with other notations/tools

In the MDE direction, AsmM can be seen as the pivot metamodel toward a
systematic integration among ASM tools and between ASMs and external tools.

According to the view presented in [13], a pivot metamodel of a given for-
malism or language L is intended as a platform-independent modelling language
which abstracts a certain number of general concepts about L. The integration
among tools supporting L can be achieved by providing, for the notation L′ (a
dialect of L) of each tool TL, a metamodel � seen as a platform-speci�c modelling
language � and model transformations to the pivot and from the pivot to the L′-
metamodel. Hence, the metamodel of the notation Li of a tool T i

L can be linked

to the metamodel of the notation Lj of another tool T j
L by the composition of

the two transformations from Li-metamodel to the pivot and from the pivot to
the Lj-metamodel. In this way, the interoperability between tools T i

L and T j
L is

achieved by translating PSM (Platform-speci�c Model) models written in Li to
Lj and vice versa.

In the ASM context, AsmM can be adopted as pivot metamodel and would
allow the integration among ASM tools at the level of metamodels. For example,
if we take AsmGofer as tool T i

L and AsmL as tool T j
L and we had de�ned the

corresponding metamodels together with precise transformation bridges from/to
AsmM, we may map an AsmGofer-PSM into an AsmL-PSM.

Similarly, one can integrate the language L or one of its tools TL with a tool
using a notation M by providing a bridge between the pivot metamodel of L to
the metamodel of M . In the ASM context, the AsmM may allow the integration
between ASMs and tools like the model checkers Spin or SMV, provided that
the metamodels for their notations exist.



For most notations M , however, the metamodel does not exists, and M is
simply pure text. In this case the bridge must be built between the metamodel
of L and a textual notation, and this can be done by using MOF-to-grammar
tools, like xText [22] of OpenArchitectureWare or TCS of AMMA [3]. In the ASM
context, we may �compile� ASM models into a programming language, like Java,
by applying a AsmM-to-Java transformation to the input ASM model.

R.10 To complement the MDE with a formal approach

In the previous sections, we have discussed some advantages that ASMs can gain
from MDE. We believe that the MDE paradigm can also gain rigor and precise-
ness from the integration with ASMs as formal method. The semantics speci�-
cation of domain-speci�c modeling languages (de�ned in terms of a metamodel),
for example, is an open problem in the MDE approach. The OMG metamod-
elling framework provides, by means of metamodels and UML pro�les (UML
metamodel extensions for a particular application domain), standard techniques
to de�ne the abstract syntax and static semantics (the OCL constraints) of a
Domain-speci�c language. However, it lacks of any standard and rigorous sup-
port to provide the dynamic (operational) semantics, which is usually given in
natural language. This lack has several negative consequences, as con�rmed by
existing work in literature which aims at formalizing the UML semantics.

Techniques and approaches to the precise and pragmatic de�nition of behav-
ioral semantics for domain-speci�c languages are still under development. One
promising method, called semantic anchoring relies on the use of well-de�ned
semantic units of simple, well-understood constructs (like a �nite state machine)
and on the use of model transformations that map higher level modeling con-
structs into con�gured semantic units. This approach has been followed, for
example, by the authors in [16,46], where AsmL is used as a common semantic
framework to de�ne the semantic domain of Domain-speci�c languages.

We believe that any formalism proposed as semantic framework must ad-
dress the following important characteristics: (i) it should be formal and powerful
enough to rigorously de�ne the operational semantics of complex real languages,
(ii) it should be executable in order to validate the metamodels' semantics, (iii) it
should be endowed with a metamodel-based de�nition conforming to the meta-
modelling framework in order to allow the applicability of model transformation
tools, and (iv) it should be able to work at high levels of abstraction. According
to these requirements, the ASM formalism seems to be a good candidate.

Similarly to the approach in [16], we propose ASMs as semantic framework
to de�ne the (operational) semantics of metamodel-based languages. The key
idea is a smooth integration of the AsmM metamodel with the OMG framework
in order to provide a means to rigorously de�ne the operational semantics of
metamodel-based languages and, in particular, of UML extensions (pro�les),
in a way which permits us to uniformly link abstract syntax, expressed in the
MOF metalanguage, and detailed semantics, expressed in ASMs (here promoted
as metalanguage, too) of languages.



Figure 7. An integrated framework for metamodel-based language speci�cation

In practice, this integration may be done as shown in Fig. 7. At the meta-
metamodel level, the MOF core constructs i.e., the Infrastructure Library, have
to be mapped into ASM concepts. This may be done by de�ning a set of trans-
formation rules, TMOFToASM, from the Infrastructure Library metamodel to the
AsmM metamodel.

At the metamodel level, a metamodel or a UML pro�le LMOF of a given
language L is translated by TMOFToASM to a ground ASM-compliant meta-
model L1

AsmM of L made of multi-sorted �rst-order structures, i.e. sets with
relations, functions and constraints, representing classes and associations of the
source LMOF metamodel. L1

AsmM needs to be complemented with the semantic
aspects of the language L. The computational model which re�ects the opera-
tional semantics of L, say L2

AsmM, is de�ned through ASM transition rules. The
static structures of the ASM signature L1

AsmM is further re�ned and enriched
with dynamic aspects, e.g., designating some speci�c entities to be ASM agents,
and introducing new functions, which, however, may be present in the origi-
nal metamodel expressed in terms of OCL query/operations. We say LAsmM =
L1

AsmM + L2
AsmM the �nal result of this modelling activity.

Note that, the process of applying the TMOFToASM can be fully automatized
by means of a transformation engine like the ATL in the AMMA platform [3],
Xactium XMF Mosaic [6], etc. However, a certain human e�ort is still required
to capture in terms of ASM transition rules the behavioural aspects of the given
language.

We have applied the proposed methodology to a UML pro�le for the SystemC
language [39] - as part of the de�nition of a model-based SoC (System-on-chip)
design �ow for embedded systems [21,40] - to de�ne the operational semantics
of the SystemC Process State Machines, an extension of the UML statecharts
used to model the reactive behaviour of the SystemC processes.



Although the proposed approach has been �rst identi�ed and tested for the
OMG's framework, it could be easily extended and applied to other metamod-
elling frameworks.

Related work

Concerning the de�nition of a concrete language for ASMs, other previous pro-
posals exist. The Abstract State Machine Language (AsmL) [8] developed by
the Foundation Software Engineering group at Microsoft is the greatest e�ort
in this respect. AsmL is a rich executable speci�cation language, based on the
theory of ASMs, expression- and object- oriented, and fully integrated into the
.NET framework and Microsoft development tools. However, AsmL does not
provide a semantic structure targeted for the ASM method. �One can see it as
a fusion of the Abstract State Machine paradigm and the .NET type system,
in�uenced to an extent by other speci�cation languages like VDM or Z� [52].
Adopting a terminology currently used, AsmL is a platform-speci�c modeling
language for the .NET type system. A similar consideration can be made also
for the AsmGofer language [43]. An AsmGofer speci�cation can be thought, in
fact, as a PSM (platform-speci�c model) for the Gofer environment.

Other speci�c languages for the ASMs, no longer maintained, are ASM-SL
[15], which adopts a functional style being developed in ML and which has
inspired us in the language of terms, and XASM [50] which is integrated in
Montages, an environment generally used for de�ning semantics and grammar
of programming languages. Recently other simulation environments for ASMs
have been developed, including the CoreAsm [18], an extensible execution en-
gine developed in Java, and TASM (Timed ASMs) [45], an encoding of Timed
Automata in ASMs.

Concerning the metamodeling technique for language engineering, we can
mention the o�cial metamodels supported by the OMG [37] for MOF itself, for
UML [47], for OCL, etc. Academic communities like the Graph Transformation
community [30,44,48] and the Petri Net community [38], have also started to
settle their tools on general metamodels and XML-based formats. A metamodel
for the ITU language SDL-2000 has been also developed [24]. Recently, a meta-
model for the AsmL language is available in the XMI format at [9] as part of
a zoo of metamodels de�ned by using the KM3 meta-language [33]. However,
this metamodel is not appropriately documented or described elsewhere, so this
prevent us to evaluate it for our purposes.
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