Encoding Abstract State Machines in PVS

Angelo Gargantini! and Elvinia Riccobene?

! Dipartimento di Elettronica e Informazione - Politecnico di Milano -
gargantini@elet.polimi.it
2 Dipartimento di Matematica e Informatica - Universita di Catania -
riccobene@dmi.unict.it

Abstract. In this paper we show how the specification and verification
system PVS (Prototype Verification System) can provide tool support for
Abstract State Machines (ASMs), especially oriented towards automatic
proof checking and mechanized proving of properties. Useful templates
are presented which allow encoding of ASM models into PVS without
any extra user’s skill. We prove the transformation preserves the ASM
semantics and provide a framework for an automatic tool, prototypically
implemented, which translates ASM specifications in PVS. The ASM
specification of the Production Cell given in [BM97] is taken as case
study to show how to formalize multi-agent ASMs in PVS and prove
properties.

1 Introduction

The Gurevich’s Abstract State Machines (ASMs) have been successfully used
for design and analysis of complex hardware/software systems [Bor99,B6r95].
Through real case studies, ASMs have shown to be a practical method for rigor-
ous system development and to meet the requirements, addressed by Heitmeyer
in [Hei98], that formal methods need to have “to be useful to practitioners™
a user-friendly notation, useful, easy to understand feedback, integration into
standard development process. ASMs use only the standard language and stan-
dard methods of programming and mathematics. They are models easy to read,
understand and inspectable by the customer, but they are flexible to change,
and precise and complete to match the designer’s requirements.

However, we believe that the success of a formal method in industrial field
also depends on the availability of related automated tools helping the user
during the process of specification and subsequent verification and validation.
Therefore, machine support for the use of ASMs is extremely useful.

During the last years various investigations have been started in order to
verify standard mathematical reasoning about ASMs by interactive or fully au-
tomated proof tools. Some encouraging results are already reported in literature
(see discussion in [B6r99]). Among theorem provers, PVS (Prototype Verifica-
tion System) has been used in [DGVZ98] to show the correctness of bottom-up
rewriting specification for back-end compilers from intermediate language into
binary RISC processor code. Dold et al. state that “erroneous rules have been



found using PVS and, through failed proof attempts, errors were corrected by
inspection of the proof state”. Mechanical checking of formal specifications and
properties is useful both as a final confirmation of their correctness and for sim-
plifying the process of discovering inconsistencies and proving properties. In fact,
experience shows that even the most carefully crafted formal specifications and
proofs, when done by hand, can still contain inconsistencies and other errors,
and that such errors are discovered only using tools capable to perform some
sort of analysis (also simply name checking, type consistency checking or other
similar simple analysis). Proofs can also be so long and tedious that machine
support can reduce the human effort.

In this paper, we show how PVS can provide tool support for ASMs, es-
pecially oriented towards automatic proof checking and mechanized proving of
properties. PVS [SOR93|, developed by SRI, is a higher order logic specification
and verification environment with a Gentzen-like deduction system. PVS pro-
vides both a highly expressive specification language and automation of proof
steps.

Starting from the work of Dold et al. in [Dol98,DGVZ98] we develop suitable
PVS theories to encode ASM models in PVS and we prove that our transforma-
tion preserves the semantics of ASMs. Our approach differs from that of Dold
et al. in the way of encoding the ASM transition system. Our goal is to find a
transformation from ASMs to PVS that preserves the layout of the original rule
transition system. To achieve this goal we do not take any strong assumption as
“only one rule enabled at a time”, indeed we allow more rules to be simultane-
ously executed. Therefore, we do not demand that the user should transform the
whole system of rules in one meta rule, transformation which can require skill
and ingenuity, especially in case of multi-agent models. Instead, we propose an
algorithmic approach of transformation which keeps the set of transition rules
as a set of different rules.

We provide useful templates for helping the user during the encoding phase,
and useful proof schemes for requirements verification. The suggested encoding
scheme is mechanizable and we provide a framework for a tool, that we pro-
totypically implemented, supporting automatic transformation in PVS of ASM
models given in the ASM-SL language [Del98].

Our PVS encoding of ASMs has been tested for multi agent models. We
report here the PVS specification of the Production Cell given in [BM97] and we
discuss our results of the mechanized proofs of its safety and liveness properties.
Several proofs are obtained with assumptions, usually regarding the physical
environment behavior, that are implicit in the formal description but need to
be added in the machine supported approach. Thanks to the PVS features, we
formulate such assumptions in a declarative way instead of using the operational
way required by the model checking approach used by Winter in [Win97] to show
the correctness of the Production Cell specification.

The article is organized as follows. The problem of encoding ASMs in PVS
is discussed in Sections 2.1-2.3. Section 2.4 shows how to validate specifications
using PVS. Sections 2.5 and 2.6 present proof schemes to support verification of



invariant properties and trace properties. Section 3 contains the PVS specifica-
tion of the Production Cell case study and the results of the verification task. In
Section 4 we discuss our work in connection with related results and we conclude
outlining future research directions.

2 An encoding of ASMs in PVS

In this section we present our encoding of ASMs in PVS. It consists of a set of
PVS theories, hierarchically organized, which define types and functions model-
ing ASM universes and rules, and of a set of PVS strategies defined in order to
simplify the proof conduction. Universe and function representation is based on
the work of Dold et al. [Dol98,DGVZ98]. PVS encoding of rules and dynamics
of ASMs is significantly changed.

2.1 Abstract State

An ASM state models an (abstract) machine state, i.e. the collection of elements
the machine “knows”, and the functions and predicates it uses to manipulate
such elements. Mathematically a state is defined as a structure which consists
of a collections of domains (sets, also called universes, each of which stands for
a particular type of elements) with arbitrary functions and relations defined on
them. Universes representation. Universes have different encoding depending
on their being static or dynamic:

— A static universe U, i.e. a universe which does not change during computa-
tion, is encoded as uninterpreted type U:TYPE.

— A dynamic universe U, i.e. a universe which may grow during computation,
is encoded as a PVS set U:setof [T] of elements of type T.
As elements can not be added to PVS types, only such encoding allows to
expand universes. To this purpose, the functions add and union, (pre-)defined
in the PVS theory sets, can be used.

Remark 1. The concept of type in PVS is very different from the usual
meaning of type in programming languages. PVS types abstractly represent en-
tities with common operations. There are only a few built-in PVS types such as
numbers, integers and boolean. Other types may be defined either as uninter-
preted types, or through the construct DATATYPE, or in terms of already defined
types by usual type constructors (as lists, records, etc.).

It is possible to encode the superuniverse itself as an uninterpreted type S and
define every universe U as a subset of S — as already noted by Dold in [Dol98]-,
or as uninterpreted subtype (with the same meaning as subset). However, in
this case it is necessary to introduce axioms to guarantee properties on sets,
as, for example, disjointness between universes, so not exploiting the strong and
powerful type system of PVS. For this reason we suggest to encode universes
as uninterpreted types whenever possible, and use the construct setof only for
dynamic universes.



Functions and states. ASM basic functions are classified in static functions
which remain constant, and dynamic functions which may change interpretation
during computations. Dynamic functions are furthermore classified in controlled,
monitored and shared. Controlled functions occur inside function updates and
can change by application of transition rules. Monitored functions can change
only due to the environment. Shared functions can change by application of a
transition rule but also by some other agents; they formalize the interactions in
case of multi-agent computations and combined updates of locations. Functions
defined in terms of the basic ones are called derived.
We encode functions almost as proposed in [Dol98§].

— Static functions are encoded as usual PVS functions.

— Monitored functions are modeled as PVS functions adding the type ENV to
the arguments of their domain. ENV is an uninterpreted type which represents
the external environment, that is everything outside the system’s control. A
boolean dynamic monitored variable is therefore encoded as a function from
ENV to bool, whereas a generic monitored function f : S — T is translated
to a function f: [ENV,S->T].

Our way of interpreting ENV is different from that proposed in [Dol98] where
ENV is the record of all monitored functions. Our view of ENV has the advan-
tage of allowing a designer to easily add and remove monitored functions.

— Controlled functions are regarded as fields of a record CTRLSTATE which
represents the controlled part of an ASM state. Therefore, if f : A — B and
g : Int — Bool are controlled functions, the controlled part of the state is
defined as CTRLSTATE: TYPE [# f:[A->B], g:[int->booll #].

— Shared function are defined as controlled functions. In a multi-agent ASM,
the controlled part of a “global” state is viewed as the collection of all con-
trolled agent’s states. Therefore, shared functions, as controlled by at least
one agent, are defined as components of the CTRLSTATE.

— Derived function are encoded as functions defined in terms of their function
components in a straightforward way from their ASM specification.

An ASM state is compound of its controlled part and the environment. It is
defined as the record STATE: TYPE [# env: ENV, ctrl: CTRLSTATE #].

2.2 ASM rules

ASM (transition) rules model the actions performed by the machine to manip-
ulate elements of its domains and which will result in a new state. A transition
rule R; has the general form:

R; : if cond; then update;
cond;, also called the guard of the rule, is a statement expressing the condition
under which R; must be applied; update; consists of finitely many functions up-
dates:

Fltr, .. tn) =t

which are executed simultaneously. f is an arbitrary n-ary function and ¢4, ..., ¢,
is the tuple of arguments at which the value of the function is set to .



How to serialize the parallel rule application. In this section we tackle the
problem of finding an algorithm to serialize firing of ASM rules which guarantees
the semantics of their parallel application as stated in [B6r99):

An ASM M is a finite set of rules [...]. Applying one step of M to a
state A produces as next state another algebra A’, of the same signature,
obtained as follows.

First evaluate in A, using the standard interpretation of classical logic, all
the guards of all the rules of M. Then compute in A4, for each of the rules
of M whose guard evaluates to true, all the arguments and all the value
appearing in the updates of this rule. Finally replace, simultaneously for
each rule and for all the locations in question, the previous A function
value by the newly computed value.

Let {R1, ..., Ry} be a set of rules. The naive approach of computing the next
state A’ of the current state .4 by applying rules R;, i = 1...n, sequentially,!
does not guarantee the ASM semantics for two reasons: (a) guards cond; of R;
are not evaluated in the same state A forall i; (b) terms occurring in the left and
right sides of function updates of R; are not all evaluated in A. The following
example may help to convince that this approach is wrong.

Example. Let A = (z — 0,y = 1,2 — 2) be the current state consisting of
three integer variables z, y, z, and {R;, Rz, Rs} be the transition system with
rules defined as follows:

Ry:ifx=0theny:=5 Ry:ify=5thenz:=2 R3:z:=z+y

By sequential rules application, it results:

z—0 x—0 ;1;—) x— 2
A:ly-1 |5 y—> & y—5 Blyss |4
z—=2 z—2 z—2 z—>

whereas by correct computation would be A’ = (z = 0,y = 5,2 — 1).
An algorithm which overcomes the errors of the naive attempt is given below.

Let {R; ,..., Ry} be a set of transition rules, R; of the form if cond; then
update; with update; a sequence of function updates f(t1,t2,...,t,) :==t, and A
be the current state.

The algorithm can be stated as follows:

1. For all rules Ry ,..., R,,, mark R; if enabled at the state .A.

2. For all ¢ such that marked R;, evaluate in A all terms ¢y, ts, .. ., t,,t occurring
in function updates f(t1,ta,...,ts) := t of update;.

3. For all i such that marked R;, sequentially perform the function updates in
update; using the values computed at step 2.

! 1.e., first evaluate the guard of R; and, if it is true, perform the updates defined in
R, to obtain A;; then apply R2 to A: and obtain As; and so on till computing the
final state A, to be taken as A’.



The proposed algorithm initially values all the guards cond; in A and only after-
wards, sequentially, performs all the function updates. Applying the algorithm
to the above example we get the following correct transformation:

z—0 z—0 z—0 z—0
A:fy—1] 3 y — 5] Blyoss | B y-a5 |
z— 2 z— 2 z—2 z—)

Rule R does not affect the state A because not enabled, and R3 correctly
computes the new value of z using the values of z and y in A.

Inconsistent updates. If a location is updated to different values by simul-
taneously finiring rules, then we speak of “inconsistent updates”. Although the
location value should remain unchanged due to the non-execution of inconsistent
updates [Gur95], according to our algorithm, the location would take the last
value assigned to it. For this reason, at the moment, we are able to consider only
consistent ASM models. It would be possible to discover inconsistent updates
through simulation of suitable test cases. However, simulation can never guar-
antee absence of inconsistency. Applying a formal verification technique similar
to that used for proving invariant properties in Section 2.4, we might discover
inconsistent updates. Checking inconsistency of ASM specifications is a problem
still under investigation. Note that the problem of firing inconsistent updates is
not taken in consideration in [Dol98,DGVZ98|.

How to deal with extend. The proposed algorithm does not give the expected
result when dealing with combination of rules which simultaneously add elements
to a same set by the construct extend. This problem arose trying to encode in
PVS the ASM model of crypto-protocol given in [BR9S§]. In this model, different
agents can send at the same time messages into the TRAFFIC (a set of messages)
representing the network channel common to all agents.

To be convinced why extend must be dealt with particular attention, con-
sider the following example. Let A be a state where a set A has value (. The
following rules are enabled in A:

Ry: if A = () then extend A with a
Ry: if A = (0 then extend A with b

Encoding “extend A with «” as a function update of the form A := A U{u},
by our algorithm, we get the following transformation:

At A {HBA->{a) B @A

However, as both rules are applicable, according to the correct semantic of
extend, we expect the result A = {a,b} in the final state A’'.

The algorithm needs to be adjusted to deal with extend. A correct solution
should (a) evaluate expressions in the current state; (b) fire updates not involving



extend against the current state; (¢) if a rule R; contains an update extend U
with u, add u to the set U interpreted not in the current state, but in the state
obtained after firing all rules preceding R; (otherwise we could loose updates of
U by other possible extends of previous rules).

The revisited version of the algorithm follows:

1. For all rules R; ,..., R,,, mark R; if enabled at the state .A.

2. For all ¢ such that marked R;, evaluate in A all terms occurring in func-
tion updates of update; with exception of those representing universes as
arguments of extend.

3. Let, unless renaming, {Ry, ..., Rn} be the set of all marked rules. Assume
so = A. Sequentially, compute s; from s; 1,4 = 1...m, performing function
updates of update; of rule R; in s; 1: use values computed at step 2 for
all terms except those representing universes within extend which must be
evaluated in s;_1. The final state s,, be A’.

Remark 2: Reserve and multisets. According to the ASM semantics,
elements added to extended universes are “new” and imported from Reserve. To
guarantee that, Dold et al. introduce a predicate new to control an element does
not already belong to the set to be extended, and a function sort_update which
extends a set by new elements. However, PVS does not allow sets to contain
different occurrences of the same element, and even Dold’s formalization does
not avoid such a problem. When an ASM specification requires the universe to
contain multiple occurrences of a same element, we suggest to encode a universe
as a multiset instead of a set. Keeping in mind that in PVS a set of elements
of type T is a function from T to bool, as natural extension, a multiset can
be encoded as a function from T to natural numbers: the value of the function
represents the number of occurrences of its argument in the multiset. Functions
and predicates on sets, like add, member, emptyset, etc., must be redefined. The
PVS theory to model multisets follows:

multisets [T: TYPE]: THEORY

BEGIN
multiset: TYPE = [T-> nat]
x, y: VAR T

a: VAR multiset
% an element x is member of a only if the occurrences
% of x in a are greater than 0
member (x, a): bool = a(x) > 0
empty?(a): bool = (FORALL x: NOT member(x, a))
emptyset: multiset = lambda x: O
nonempty?(a): bool = NOT empty?(a)
% the function ‘““add’’ returns the same multiset modified
% increasing by one the number of occurrences of the added
% element
add(x, a): (nonempty?) = lambda y:
if x = y then a(y)+ 1 else a(y) endif
END multisets



Remark 3. The rule encoding proposed in [Dol98,DGVZ98] is based on the
(strong) assumption that rules “concern distinct (disjoint) cases”. As a conse-
quence, one may infer that (a) at every step only one rule is enabled, and there-
fore (b) all rules “may be combined into a single state transition function, defined
by a case construct or nested conditionals”. Such a single transition function is
called “one-step interpreter” by Dold et al. This assumption of disjoint cases is
restrictive, since in many applications more then one rule might fire at a time.
In case of possible simultaneous firing of many rules, a unique transformation
function might still model the ASM dynamics as well, however we prefer keeping
the set of transition rules as set of distinct rules, without forcing the user to
define an equivalent transformation function from the current state to the next
one. The advantages are two: first stylistic, because we preserve the ASMs struc-
ture, and second practice, because writing one equivalent global transformation
function requires skill and ingenuity. Furthermore, due to the assumption that
only one rule can be applied in one step, the one-step interpreter is absolutely
not suitable in case of multi-agent ASMs.

Remark 4. Another possible approach for rule encoding would be to define
the value of every variable and function (location) in the next step by means of
axioms. For example, the update f(z) := t would be translated into an axiom of
the form update : AXIOM f(next(s))(x) = t , where next(s) stands for the
next state. In this way it would not be necessary to introduce the state as a record
and we could consider the state as simple uninterpreted type. This approach is
similar to that taken by [Win97] to translate ASMs in SMV. However, this
translation does not preserve the original form of the rules and problems rise
when a rule consists of more than one function update, or when more rules
update the same function (location). In both cases, a complex transformation is
needed as described in detail in [Win97].

2.3 Implementing ASM rules in PVS

In this section we show how the proposed algorithm has been implemented in
PVS. Keep in mind that in our encoding a state consists of a controlled part
(CTRLSTATE) modifiable by the rules, and the environment (ENV).

Rule encoding. We consider a rule as a function Ri(current,intCtrl). The
first argument current: STATE represents the current state s (controlled part
and environment), and it is used to evaluate guards (step 1 of the algorithm)
and compute terms (step 2 of the algorithm). The second argument intCtrl:
CTRLSTATE represents an intermediate controlled state which is the result of
applying the previous i —1 rules, and is used to compute those updates extending
sets (step 3 of the algorithm). Ri(current,intCtrl) yields a new controlled
(intermediate) state.

In PVS a rule is defined as Ri: [STATE,CTRLSTATE -> CTRLSTATE].



Computation of the next state by composition of rules. To compute the
next state of a current one by application of a set of rules, we define the function
next as explained below.

Let Ri, Ry, ..., R, be a set of rules, and s the current state (its controlled
part be ¢s). The controlled part ¢s’ of the next state s’ is inductively defined as
follows:

1. ¢csp = cs
2. fori=1,...,n:cs; = Ri(s,csi-1)
3. ¢s’ = csp

Rl RZ Rn
v T
S "~CSl_ ______ C32 _____ LGS Cs =Cs,

This algorithm defines only how to compute the controlled part of s’ since
the rules do not change the monitored part (i.e. the environment).

The set of all ASM rules is encoded as a list rules of functions from state
and controlled state to a controlled state:

rules: 1list[[STATE,CTRLSTATE->CTRLSTATE]]

The application of the list rules of rules using as current state sO and as
intermediate controlled state cs_i, is given by the following recursive definition?:

apply(s0O,cs_i,rules) : recursive CTRLSTATE =
if null?(rules) then cs_i
else apply(s0,car(rules)(s0,cs_i),cdr(rules))
endif measure length(rules)

The controlled part of the next state of s is defined applying the list rules of all
ASM rules, and taking s as initial current state and its controlled part as initial
intermediate controlled state:

nextCtrlState(s:STATE): CTRLSTATE = apply(s,s‘ctrl,rules)

The monitored part (the environment) of the next state of s is defined by
the following function returning a random value for ENV:

nextEnv(s:STATE) : ENV

The next state of s is the composition of the two next (controlled and mo-
nitored) parts:

next (s:STATE) : STATE =
(#env:= nextEnv(s), ctrl:= nextCtrlState(s) #)

% car and cdr are built-in PVS functions yielding head and tail of a list, respectively.



Templates for rules encoding. We report here the two templates for rules
encoding. They distinguish between rules with and without extending updates.
Let R; = if cond; then update; be a transition rule.

1 If update; is a sequence of function updates of the form f(¢y,...,t,) ;= t, then
R; is translated in PVS as follows:
Ri(current, intCtrl) : CTRLSTATE =
IF cond_i(current) THEN intCtrl
WITH [f:=f(intCtrl) WITH [(t1,...,tn):=t]]
ELSE intCtrl ENDIF
If the guard cond_i is true in the current state then the updated interme-
diate controlled state intCtrl is returned; otherwise the state intCtrl is
returned unchanged (all terms ti and t are computed in the current state).
2 If update; has the form extend Delta with alpha, then R; is translated in
PVS as follows:
Ri(current, intCtrl) : CTRLSTATE =
IF cond_i(current) THEN intCtrl
WITH [Delta := add(alpha,Delta(intCtrl))]
ELSE intCtrl ENDIF
If the guard cond_i is true, the element alpha is added to Delta evaluated
in intCtrl; otherwise intCtrl is returned unchanged.

Example 1. The following examples may help to better understand rules
encoding. Let the ASM rules be

Ry:ifx=0theny:=5 Ry:ify=5thenz:=2 R3:z:=z+vy
The controlled state is defined as a record of three variables:

CTRLSTATE: TYPE = [# x: int, y: int, =z: int #]
The three rules are defined as follows:

Ri(current, intCtrl) : CTRLSTATE =

IF x(current) = 0 THEN intCtrl WITH [y := 5]
ELSE intCtrl ENDIF
R2(current, intCtrl) : CTRLSTATE =

IF y(current) = 5 THEN intCtrl WITH [x := 2]

ELSE intCtrl ENDIF
R3(current, intCtrl) : CTRLSTATE =
intCtrl WITH [z := x(current) + y(current)]

Example 2 (with sets).

Ry: if A =0 then extend A with a

Ry: if A = () then extend A with b
Assuming that elements of the set A belong to a certain type elementType,
and ¢ and b are two constants of that type:

elementType : TYPE
a,b : elementType

the controlled state is defined as a record containing only the set A:



CTRLSTATE: TYPE = [# Delta: SETOF[elementTypel#]
The two rules become:

Ri(current, intCtrl) : CTRLSTATE =
IF empty?(Delta(current)) THEN intCtrl
WITH [Delta := add(a,Delta(intCtrl))]
ELSE intCtrl ENDIF
R2(current, intCtrl) : CTRLSTATE =
IF empty?(Delta(current)) THEN intCtrl
WITH [Delta := add(b,Delta(intCtrl))]
ELSE intCtrl ENDIF

Non determinism. In ASM non-determinism can be expressed using the con-
structor choose which allows to fire a rule R(z) choosing randomly an z satis-
fying given conditions:
choose z in U s.t. g(z)
R(z)
In PVS choose can be encoded by a monitored function from the environment
to the subset of U consisting of elements satisfying the condition g(z).
chooseX : [ENV-> {x:Ulg(x)}]
The subcase choose z in U is encoded by chooseX : [ENV->U]. The non-
determinism is captured by leaving undefined (without no specified mathematical
low) the function chooseX. Therefore, for a given environment e, the value of
chooseX(e) in {x:U|g(x)} is not determined.

2.4 Validating specifications through simple proofs

After having specified system universes, functions and rules, the designer should
check whether the specification is correct or not, i.e. if it meets users’ needs and
if it satisfies all the desired properties (requirements).

The first step in this direction is to check some possible behaviors of the
system as specified and compare them with the desired behaviors. This approach
is followed by ASM simulators (like ASM Workbench and ASM-Gofer). A similar
approach might be followed in our encoding, probing the specification by means
of “formal challenges”. With this term we mean putative theorems, i.e. properties
that should be true if the specification is correct. The designer should start
from formally specifying and proving very simple statements and then gradually
prove more complex properties. Only at the end he/she should try to prove the
complete requirements.

In our Example 1 a very simple property is: “if in state s zis 0, yis 1 and 2
is 2, then in the next state z should be equal to 0, y to 5 and 2z to 1”. It can be
encoded as the following lemma:

propl: lemma
sfctrl= (#x:=0,y:=1,z:=2#) => next(s) = (#x:=0,y:=5,z:=1%#)



We have proved the lemma prop1 simply using the PVS decision procedures
of rewriting and symbolic execution. More complex and complete properties
might contain quantification on system quantities and, therefore, to be proven
they might need the use of more advanced PVS strategies.

The main goal of these short proofs is to gain a deeper understanding of
the system, to become confident in the correctness of the proposed description
and model, and discover possible errors or faults as early as possible, since it is
widely acknowledged that the cost of correcting specification errors is order of
magnitudes higher in the later stages of the life cycle of the system (like during
testing or even during its normal functioning). At the end the designer should
be able to formally state and prove the actual requirements. The verification of
system requirements is the subject of the following sections.

2.5 Using induction to prove invariants

In mathematics induction is widely used to prove properties that hold for every
natural number. In formal models that describe system behavior as a sequence
of states (as the ASM approach does), the same scheme can be used to prove
system invariants, i.e. properties holding in every state. In this case induction is
based on the following theorem:

Theorem 1. Let Sy be the set of all initial states and P(s) a property of the
state s. If

(i.) P(so) holds Vs € So;

(ii.) P(s) — P(s"), Vs, s' states such that s' = next(s)
then P is an “invariant”.

In our encoding we have defined and proved theorem 1 as follows:

induction: THEOREM
(forall(s:STATE): P(s)=> P(next(s)) and
(forall(s:(init)): P(s)) implies INV(P)

where (init) denotes the set of initial states and P the property to prove as
invariant (INV(P) means that P is true in the initial state and in every reachable
state).

This theorem, along with an “ad hoc” strategy that we have defined in the
file pvs-strategies, provides an induction scheme that can be used to prove
invariants in ASM models.

2.6 Trace properties

A traceis an (infinite) sequence sg, 81, - - -, Sy, - - - Of states — any state s; should be
considered as compound of the controlled part and the environment — satisfying
the property that: a) s¢ is a valid initial state, and b) for every pair of subsequent
states s;, s;+1 it holds that s;y; is the next state of s;.

In our encoding a trace is formalized as a sequences of states satisfying the
property of being a trace stated above:



trace: TYPE = {x : sequence[STATE] | member(first(x),init)
and forall n: nth(x,n+1) = next(nth(x,n))}

Trace properties are properties on traces, i.e. properties which are expressed
and proved in terms of traces. The two most common types of trace properties
are:

— properties holding in every state of every trace (always), or
— properties holding at least in one state in every trace (eventually).

We can express in PVS that a property stateProp holds in every state of the
trace t by the following predicate:

always (t,stateProp): bool = FORALL n: stateProp(nth(t,n))

We have proved the equivalence between this approach based on traces and
that based on invariants by proving the following lemma

Lemma 1. “stateProp” is an invariant iff it always holds in every trace of the
system.

In PVS:  equivalence: LEMMA
INV(stateProp) <=> forall t: always(t,stateProp)

We express in PVS that a property reachProp holds in a state of the trace ¢t by
the following predicate:

eventually(t,reachProp): bool = EXISTS n: reachProp(nth(t,n))

The always property is normally used to express “safety” requirements (“nothing
bad will never occur”): properties that must be true in every state. The even-
tually property normally expresses “liveness” properties (“something good will
eventually happen”) modeling requirements that must be eventually true.

3 A Case Study: Production Cell

In this section we explain this novel use of PVS as tool support for ASMs using
as case study the Production Cell model given in [BM97]. The main purpose of
this section is not to show that the Production Cell specification of Borger and
Mearelli satisfies safety and liveness properties. That has been already proved in
[Win97] by means of the model checker SMV. We simply like to show, through
a concrete example, how to apply our method of encoding ASM specifications
in PVS, and how to mechanize proofs.

3.1 A brief introduction of the Production Cell Case Study

The production cell control problem was posed in [LL95] as case study derived
from “an actual industrial installation in a metal-processing plant in Karlsruhe”
to obtain a “realistic, comparative survey” for testing “the usefulness of formal



methods for critical software systems and to prove their applicability to real-
world examples” [LL95]. Borger and Mearelli propose a solution of the production
cell control problem in [BM97], and show how to integrate the use of ASMs into
a complete software development life cycle.

... the production cell is composed of two conveyor belts, a positioning
table, a two-armed robot, a press, and a traveling crane. Metal plates
inserted in the cell via the feed belt are moved to the press. There, they
are forged and then brought out of the cell via the other belt and the
crane. [LL95]

The system is specified “as a distributed ASM with six modules, one for the
agents” — the Feed Belt, the Robot, the Press, the Deposit Belt, the Traveling
Crane, the Elevating Rotary Table — “composing the production cell, and working
together concurrently where each of the component ASMs follows its own clock.
Each of the agents represents a sequential process which can execute its rules as
soon as they become enabled. The sequential control of each agent is formalized
using a function currPhase: Agent — Phase which yields at each moment the
current phase of the agent”’[BM97|. Please refer to [BM97] for further details.

3.2 The PVS specification

For convenience, we report below the signature and the module of the Ground-
CELL Program for the Feed Belt (FB).
Monitored function: PiecelnFeedBeltLightBarrier
Shared function: TableLoaded (between FB and the elavating rotary table ERT)
Derived functions:
TablelnLoadPosition = currPhase(ERT) = StoppedInLoadPosition
TableReadyForLoading = TablelnLoadPosition and not TableLoaded
Controlled functions: FeedBeltFree,
currPhase(FB) € {NormalRun,Stopped,CriticalRun}.

Module:
FB _NORMAL.
if currPhase = NormalRun and PiecelnFeedBeltLightBarrier
then FeedBeltFree:= True
if TableReadyForLoading then currPhase:= CriticalRun
else currPhase:= Stopped
FB_STOPPED.
if currPhase = Stopped and TableReadyForLoading
then currPhase:= CriticalRun

FB_CRITICAL.
if currPhase = CriticalRun and PiecelnFeedBeltLightBarrier
then currPhase:= NormalRun
TableLoaded:= True



Initialization: currPhase = NormalRun, FeedBeltFree = True,
PiecelnFeedBeltLightBarrier = False

We now report the PVS encoding of the Feed Belt specification. To describe
the Feed Belt we define a type containing all the possible values of the feed belt
phase:

FBPhase : TYPE = {NormalRun,Stopped,CriticalRun}

The controlled function FeedBeltPhase is then included as component of the
record CTRLSTATE which represents the controlled part (controlled and shared
functions) of the (global) state:

CTRLSTATE : TYPE =
[# FeedBeltPhase : FBPhase,
FeedBeltFree : bool, % controlled by the FB
TableLoaded : bool, % controlled by the FB and ERT
. #]

The dots are replaced by the controlled part of the other five agents, that we
skip for the sake of conciseness. Monitored variable is defined as function from
the environment to its domain as:

PieceInFeedBeltLightBarrier : [ENV->booll

Starting from definitions of monitored and controlled functions, derived functions
are defined as:

TableInLoadPosition(s:CTRLSTATE) : bool =
ERTPhase(s) = StoppedInLoadPosition

TableReadyForLoading(s:CTRLSTATE) : bool =
TableInLoadPosition(s) and not TableLoaded(s)

The initial state is modeled by a predicate over the states (we report only the
part concerning FB):

init(s:STATE) : bool =
FeedBeltPhase(s)= NormalRun and FeedBeltFree(s)
and not PiecelInFeedBeltLightBarrier(s)

For the rules we report only the example of the FB__ NORMAL rule:

FB_NORMAL (current,intCtrl): CTRLSTATE =
if FeedBeltPhase(current) = NormalRun and
PieceInFeedBeltLightBarrier (current)

then intCtrl with
[FeedBeltFree := true,
FeedBeltPhase := if TableReadyForLoading(current)
then CriticalRun
else Stopped
endif]
else intCtrl
endif



3.3 The Safety Properties

Using PVS we have proved all the safety properties (for the Feed Belt, the Robot,
the Press, the Deposit Belt, and the Traveling Crane) of the Production Cell as
given in [BM97]. For some of these properties, the encoding in PVS and the
proof are straightforward. Others require some user effort and skill. In order to
discuss the degree of interaction necessary for proving in PVS the requirements
of the Production Cell case study, we present some selected examples of proved
properties having different degree of complexity.

The Feed Belt Safety Property: the feed belt does not put metal blanks
on the table if the latter is already loaded or not stopped in loading position, has
been quickly encoded considering that the feed belt puts metal blanks only when
it is in the CriticalRun phase®:

FeedBeltSafety: theorem
FeedBeltPhase(s) = CriticalRun
=> ElevatingRotaryTablePhase(s) = StoppedInLoadPosition
and not TableLoaded(s)

The proof of this property, reported below, is immediate (as also its hand proof
in [BM97]):

("" (ASM-INDUCT)
(("1" (COMPUTE-NEXT) (GRIND))
("2" (TYPEPRED "is!1") (GRIND))))

(ASM-INDUCT) applies the induction theorem presented in Section 2.5. By
induction the proof is split in two parts: the induction step (proved by the
branch "1") and the initial state (branch "2"). (COMPUTE-NEXT) is a strategy
defined in our encoding and expands the definitions of the next state and the
rules. (GRIND) is a PVS command that rewrites remaining definitions, splits the
cases and applies the decision procedures of PVS. (TYPEPRED "is!1") recalls
the type definition of the initial state "is!1". The last (GRIND) expands the
definition of initial state and applies the PVS decision procedures.

This proof case shows that the user effort to write properties and obtain rel-
ative proofs might be very low. According to our experience, all simplest prop-
erties whose proof do not involve assumptions about the environment, require a
minimal user interaction and their proofs can be performed using induction, case
splitting, decision procedures, and rewriting rules. However, many other prop-
erties have to be proved taking in consideration the interaction of the system
with the environment. In these cases, proving properties might require greater
user effort and skill. As example, consider the first part of the Press Safety
Property 1: the press is not moved downward if it is in its bottom position. Its
PVS encoding is straightforward:

3 In this lemma and in the following ones, s is to be considered as universally quantified
over the set of all reachable states from an initial state.



PressSafetyla: theorem
PressBottomPosition(s) =>
not PressMotorDown(Press(next(s)))

However, to prove this property, we have to introduce an assumption about
the monitored function BottomPosition asserting that if the press is closed for
forging, then it is not already in the bottom position:

notBottom: axiom
PressPhase(s)= ClosedForForging => not BottomPosition(s)

This is an obvious implication considering how the system works, but we have
to explicitly state that by means of an axiom. For other properties we introduce
similar assumptions by means of axioms, and recall these axioms during proofs.
These assumptions often concern the correct behavior of the sensors, and some-
times are missing in the original description because implicitly assumed. This
again shows that automatic support may help to uncover errors forcing the de-
signer to precisely introduce every assumption. Note that these assumptions are
introduced by means of logical statements, similar to those given in [BM97], while
a model checker would require us to express them in an operational way. Upon
introducing the notBottom assumption, the proof of the Press Safety Property 1
is obtained applying induction, expanding the definitions and applying the PVS
decision procedures. Another example we like to report here is the Press Safety
Property 2: The press does only close when no robot arm is positioned inside
it. In order to encode this property in a concise form, we introduce two (derived)
boolean functions: PressIsClosing and ArmInPress, defined as

PressIsClosing(s): bool = PressMot(PressPhase(s)) = up
i.e. the press is closing only when its motor is going up, and

ArmInPress(s): bool =
Arm1Ext(s) > O and Angle(s) = ArmiToPress or
Arm2Ext(s) > O and Angle(s) = Arm2ToPress

Using these definitions the property becomes:

PressSafety2: theorem
PressIsClosing(s) => not ArmInPress(s)

To prove this property we model the angle of the robot arm by the monitored
variable Angle encoded as function on the environment:

Angle :[ENV-> reall

Then we formalize all the assumptions about the movement of the robot: how
the robot rotates, how the angle changes, and how the sensors communicate to
the robot when to stop. We prove the Press Safety Property 2 using induction,
case analysis (considering all the possible robot phases in the current and in the
next state), recalling the assumptions about the robot movement, and applying
the automatic decision procedures of PVS.



3.4 The Liveness Property

We have proved the liveness property as well, i.e. that the system never goes in
deadlock. We have stated it as “every component in the system will eventually
change its state”. This statement is weaker than the property proved (by hand)
in [BM97]. Borger and Mearelli establish also a performance valuation about
the number of pieces that the cell is able to process cyclically. The proof of
this performance property is under investigation. Our property is similar to the
“progress agent property” stated in [BM97].

In order to prove liveness, we model and specify some assumptions about
the environment (those called “Cell Assumption” in [BM97]). For example we
assume that every object on the feed belt keeps moving until eventually it arrives
at its destination and the monitored function PieceInFeedBeltLightBarrier
becomes true:

FBAssumption: axiom
FeedBeltPhase(s) = NormalRun =>
exists(ns: (followingOrNow(s))) :PieceInFeedBeltLightBarrier (ns)

followingOrNow(s) is the set of all states obtained repeatedly applying the
function next to the state s, and of the state s itself.

We make similar assumptions for every state of every component of the cell,
thus we assume that every component keeps moving till the monitored function of
interest (which selected on the basis of the state and the component) eventually
changes its value. Starting from these assumptions we prove, for example, the
liveness of the FeedBelt:

FeedBeltProgress: lemma
exists (ns: (following(s))):
not FeedBeltPhase(ns) = FeedBeltPhase(s)

Using the same approach we are able to prove similar properties for every agent.

4 Related Work and Conclusions

Several attempts of applying both theorem provers and model checkers to ASM
models have been performed. In [SA97] the KIV (Karlsruhe Interactive Veri-
fier) system has been used to mechanically verify the proof of correctness of
the Prolog to WAM transformation. PVS has been used in [DGVZ98,Dol98] to
perform mechanical verification of the correctness of back-end rewrite system
(BURS) specifications. A model checker approach is reported in [Win97] where
correctness of the Production Cell specification of Borger and Mearelli has been
proved through SMV. Recently, an interface from the ASM Workbench to the
SMV model checking tool, based on an ASM-to-SMV transformation, has been
presented in [DW99].

A direct comparison of our approach can be done with the work of Dold et
al. using PVS and with the Winter’s work using SMV.



Along our presentation, especially in remarks 1,2 and 3, we have discussed
differences between Dold et al.’s approach and ours. We provide a more natural
translation of ASMs in PVS keeping the set of transition rules as a set of different
rules, instead of forcing the user to define an equivalent transformation function
in terms of one meta rule. We also provide the user with useful templates to guide
his/her formalization of ASMs in PVS. These templates have also allowed us to
provide a framework for a tool to automatically translate ASM specifications
in PVS. This tool is under development and we plan to integrate it into the
ASM-Workbench system. In addition we present proof schemes to encode and
prove invariants and properties on traces.

Although the approach based on the model checker SMV allows properties
verification in a completely automatic manner (unless the well known state ex-
plosion problem), the advantages of using our approach regard both the spec-
ification and the verification phase. PVS can easily manage specifications with
infinite sets and/or infinite agents, has a powerful language (to represent func-
tions, sets, lists and so on), has a strong type system, and can use the usual
logical constructs (like universal and existential quantifications). Proof can be
performed almost automatically in the simplest cases (as shown in the Produc-
tion Cell case study). For more complex properties, in any case, our encoding
can be used to check proofs done by hand or to support the user during the proof
in an interactive way. In connection with the results presented in [Win97], we
like to remark that the model checking approach can deal only with a finite set
of agents and each agent having a finite number of possible states. This is the
case of the Production Cell, under the assumption that continuous intervals (for
example, the robot angle values) can be treated as finite sets of discrete values.
This assumption was indeed used by Winter in [Win97|, while it is not necessary
in our approach, since we are able to deal with infinite sets (for example, we
treat the robot angle as a real number). The correctness proof (with its results)
of the Production Cell specification as it is shown in [Win97] has to be related
to the added formalization of the environmental behavior. It is a mayor benefit
of our approach that the assumptions regarding the interaction of the system
and the environment can be formalized in a logical than in an operational way
(i-e. in terms of transition rules) as required in [Win97].

Concluding, we like to stress our confidence that the proposed PVS encoding
also works well for multi-agent ASMs which are very complex to treat. It is not
so hard to imagine how difficult can be performing mechanized proof verification
of properties regarding interleaving computations of agents. The case study we
present here is an example of a multi-agent system, but with a limited number of
agents. However, the method has been successfully applied to analyze properties
of crypto-protocols, where an unlimited number of agents run simultaneously.
Security and authentication properties of the ASM specification presented in
[BR98] have been proved in PVS using the technique of invariants. We have
voluntarily left the presentation of these results out because they would require
a specific treatment.



Acknowledgments. We kindly like to thank Egon Borger for his useful advice.
We also thank anonymous referees for their helpful suggestions.

References

[BM97]

[Bor95]

[B6r99]

[BR9S|

[Del98]

E. Borger and L. Mearelli. Integrating ASMs into the Software Development
Life Cycle. Journal of Universal Computer Science, 3(5):603-665, 1997.

E. Borger. Why Use Evolving Algebras for Hardware and Software Engi-
neering? In M. Bartosek, J. Staudek, and J. Wiederman, editors, Proceedings
of SOFSEM’95, 22nd Seminar on Current Trends in Theory and Practice
of Informatics, volume 1012 of LNCS, pages 236-271. Springer, 1995.

E. Borger. High level system design and analysis using abstract state ma-
chines. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors,
Current Trends in Applied Formal Methods (FM-Trends 98), number 1641
in LNCS, pages 1-43. Springer-Verlag, 1999.

G. Bella and E. Riccobene. A Realistic Environment for Crypto-Protocol
Analyses by ASMs. In Proceedings of the 28th Annual Conference of the
German Society of Computer Science. Technical Report, Magdeburg Uni-
versity, 1998.

G. Del Castillo. The ASM Workbench: an Open and Extensible Tool En-
vironment for Abstract State Machines. In Proceedings of the 28th Annual
Conference of the German Society of Computer Science. Technical Report,
Magdeburg University, 1998.

[DGVZ98] A.Dold, T. Gaul, V. Vialard, and W. Zimmerman. ASM-Based Mechanized

[Dol9g]

[DW99]

[Gur9s]

[Hei98]

[LL95]

[SA97]

[SOR93]

[Win97]

Verification of Compilter Back-Ends. In Proceedings of the 28th Annual
Conference of the German Society of Computer Science. Technical Report,
Magdeburg University, 1998.

Axel Dold. A formal representation of abstract state machines using pvs.
Technical Report Verifix Report Ulm/6.2, Universitat Ulm, July 1998.

G. Del Castillo and K. Winter. Model Checking Support for the ASM High-
Level Language. Technical Report TR-RI-99-209, Universitdt-GH Pader-
born, June 1999.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Bérger, editor,
Specification and Validation Methods, pages 9-36. Oxford University Press,
1995.

C. Heitmeyer. On the Need for Parctical Formal Methods. In Proceedings
of FTRTFT’98, 5th Intern. Symposium Real-Time Fault-Tolerant Systems,
volume 1486 of LICS, pages 18-26. Springer, 1998.

C. Lewerentz and T. Linder, editors. Formal Development of Reactive Sys-
tems. A Case Study “Production Cell”. Number 891 in LNCS. Springer,
1995.

G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines:
The WAM Case Study. Journal of Universal Computer Science, 3(4):377-
413, 1997.

N. Shankar, S. Owre, and J. Rushby. The PVS proof checker: A reference
manual. Technical report, Computer Science Lab., SRI Intl., Menlo Park,
CA, 1993.

K. Winter. Model Checking for Abstract State Machines. Journal of Uni-
versal Computer Science, 3(5):689-701, 1997.



