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Abstract
We specify a controller for a steam boiler starting from an informal descriptions of its
requirements. The specification is formalized in the temporal logic TRIO and its object-
oriented extension TRIO+. To obtain a maximum of  abstraction and reuse we make the
specification parametric with respect to all equipment and hardware features, and we avoid
to impose any particular strategy in the management of the available resources and in the
control of the critical physical quantities.

1 Introduction
Computers are finding increasing applications in the fields of the control of real-
time and safety-critical systems (avionic systems, medical systems, plant control
systems, etc.). The development of such systems requires appropriate well-
structured methods to master their high complexity. A particular importance is
ascribed to the specification phase, since very often the errors encountered during
their development can be traced back to inaccuracies or ambiguities in the
description of the requirements. It is therefore particularly important that
requirements specifications be precise (to avoid ambiguities), formal and
mathematically well founded (to allow mechanized support in their analysis) and
transparent (to serve as a common reference and a means of communication among
humans).

The present report presents the specification of a steam boiler controller
proposed in [AS] as a benchmark to assess the adequacy of specification methods to
cope with practical non-trivial time- and safety-critical systems. The specification is
written in TRIO, a temporal logic with metric on time that is particularly well suited
to the specification of real time systems. TRIO is a logical language and therefore it
favors a descriptive style where properties, rather than procedures or mechanisms,
are specified, and the requirements are stated abstractly, avoiding any unnecessary
bias with respect to particular design choices or implementation strategies. TRIO is
the result of a long term cooperation among industry and academia, and in recent
years a specification, validation, and verification  environment has been built around
the language, to support the development of industrially-sized time critical
applications. The environment includes the definition of TRIO+, an object oriented
extension of the language that effectively supports the modularization and the reuse
of specifications of highly complex systems.

The report is organized as follows. Section 2 contains the formal specification
of the steam boiler: it is organized in subsections according to the modular structure
of the TRIO+ classes describing the overall system. Section 3 briefly illustrates how
the specification can be usefully employed in the subsequent validation and
verification activities with the support of automated tools developed around the



language, and discusses the notion of safety assessment of the specified system.
Appendix 1 “(see CD-ROM Annex GM.1)” provides a brief overview of TRIO: to
make the succeeding presentation reasonably self contained we illustrate the syntax
of the language and the definition of the used derived operators; for the sake of
brevity, the main features of the TRIO+ language are just recalled, referring the
interest reader to the literature.

2. The Specification
To facilitate understanding by the reader, the presentation of the steam boiler formal
specification in TRIO+ will follow a top-down approach. First, in Section 2.1, we
illustrate the main assumptions and choices that we took in developing our
specification. This should provide a rational to help the reader in obtaining a clear
overall picture and a general understanding of our specification. Then in Section 2.2
we illustrate the modular structure of the specification describing informally how
the various aspects of the requirements are separated and located in the specification
components. At this point the reader should have precise and exact expectations on
what will be found inside the modules at the lowest level of the part-of hierarchy
determined by the modular structure, those containing the TRIO axioms that
formalize the requirements. The detailed presentation of TRIO axioms is in
Appendices from 2 to 11. “(see CD-ROM Annex GM.2)”

2.1 Assumptions and Choices
For the sake of abstraction the description of the steam boiler in the informal
specification document [AS] deliberately leaves undetermined, and thus open to
interpretation, several aspects of the control strategy and of the criteria to be used in
the interpretation of messages coming from the equipment. Furthermore, each
adopted specification formalism provides a particular notation to characterize the
desired properties of the specified system, and different ways to obtain a model by
abstracting away from irrelevant details. Most of the remarks listed below will be
discussed in more depth in the subsequent paragraphs where the specification is
presented in complete detail.

Representation of time. The informal specification document describes the
operation of the program in terms of a possibly infinite iteration of a cycle that take
place each five seconds. It is also assumed that: data transmission among the
controller and the equipment is instantaneous and all messages are emitted (and
received) simultaneously; that during every cycle the program can receive messages,
analyze them, and send (response) messages. We model all these assumptions by
choosing for our specification a temporal domain consisting of a discrete set, e.g.,
the set of integers, where each instant is intended to represent one distinct cycle time
for the control program. As a consequence of this choice, the control program
appears to have instantaneous reactions times, which is clearly a simplification of
reality but is consistent with the abstraction level of the informal specification
document [AS]. The main advantage of this choice is that the temporal properties
and requirements can be described by means of very simple and transparent TRIO
formulas. The description of the steam boiler at a more detailed level is obviously



possible by choosing a finer time granularity to represent time instants between
consecutive program activations and inside each activation, but this would require to
consider information regarding the Hw/Sw architecture of the implemented system
and thus would involve the design phase, which we consider to be out of the scope
of the present exercise.

Management of the pumps. The informal specification document [AS] does not
describe any particular policy in the management of pumps (i.e., how to alternate
the usage of the functioning pumps) and provides only a very simple criterion for
the diagnosis of faults (i.e., how to establish that a pump and/or its controller is
operating correctly). As a consequence we leave unspecified this choice when more
pumps than necessary are available, by specifying only that, at any time, the
controller must choose nondeterministically, among to functioning pumps, exactly
those ones needed to cover the current requested throughput. Further refinement of
the specification (or appropriate design choices) could specify a particular pump
management policy (e.g., minimizing pumps wear by avoiding pump state changes,
or balancing the load by alternating them as much as possible); in this case it would
be necessary (and possible using the TRIO deductive system) to prove that such a
policy is correct w.r.t. the high-level, nondeterministic specification of the present
document.

Regarding the diagnosis of faults for pumps and pump controllers, we remark
that even very complex and sophisticated diagnostic criteria cannot lead to absolute
certainty on the effective state of the various equipment components if such criteria
are based on comparisons among measures perceived through sensors and no
assumption or estimation is made (as it happens in the document [AS]) on the
availability and reliability of such measures coming from the sensors. In other
terms, if all information coming from the field is equally subject to some
uncertainty then all conclusions drawn from them based on comparisons or
deductions (even though arbitrarily complex) cannot, in general, be absolutely
secure. Keeping this remark in mind, for the diagnosis of pumps and pump
controller faults we provide three sample criteria of increasing complexity, from the
simplest one outlined in the [AS] document to two other, more sophisticated ones,
where one considers the consistence between the state of each pump and that of its
controller, or the probability of simultaneous faults. These more elaborate criteria
can permit to improve the average effectiveness of the plant management but do not
provide an absolutely error-free knowledge (and therefore control) of the plant state.
These ideas will be illustrated and discussed in more depth in Appendix 7 “(see CD-
ROM Annex GM.7)”.

Another consequence of the above remarks on the reliability of the information
coming from the field is that a primary property such as safety  (which in our case
can be stated as: the controller will always go into the emergency stop mode as soon
as the water level reaches the minimal or maximal limit quantity M1 and M2) will
be asserted (and could be proved) only under the condition that the water level
sensor only breaks down in a “recognizable” way, i.e., its indications are correct if
they are reasonable, i.e., inside the physical limits for the capacity, 0 and C. In



section 3 we will also discuss the methodological implications of this approach in a
correct and effective design discipline.

Operation during the rescue mode. For reasons related to the above remarks on
the reliability of the information provided by the sensors, our specification
prescribes, during the rescue mode, an operation of the plant that is more restrictive
than that indicated by the informal specification document. When operating in the
rescue mode, the controller abandons any information currently provided by
sensors: it takes as reference the last useful value provided by the level sensor and
evaluates the minimum time necessary for the plant to reach a dangerous condition
considering it as out of control, i.e., it evaluates the minimum between the time
needed to reach level M1 when all pumps are closed with a maximal steam flow and
the time needed to reach level M2 when all pumps are open and no steam exits the
boiler. If this time elapses without any event intervening that takes the controller out
of the rescue mode, then it spontaneously goes into to emergency stop mode. The
rationale for this stricter requirement on the controller behavior during the critical
rescue mode is that reaching this mode is a symptom that something unexpected or
unnoticed and potentially dangerous has happened, so the most prudent choice is not
to rely on the sensors and actuators and work under the most pessimistic
assumptions. Not surprisingly, this specification choice allows one to ensure the
safety property under conditions that are particularly simple and easy to implement,
as it will be shown in section 3. An alternative, less prudent plant operation during
the rescue mode (such as the one described in the informal specification) would
make the property of safety more difficult to obtain in practice, and also to prove
formally as a property of the modeled system.

Management of the water level. Like the management policy for pumps, also
the policy for keeping the water level within the prescribed limits is left
undetermined in [AS]. An addendum to the informal specification simply suggests
to open the pumps (without indicating the measure of such opening) if the water
level is estimated to be below N1, and to close them (again without indicating how
much) when it is above the limit N2. To obtain maximum generality we provide a
framework where a variety of strategies for managing the water level can be
described: at any time a quantity called “requiredThroughput” is defined as a non-
negative real quantity whose actual value is determined by the adopted policy in
water management. Then, in the present specification, we adopt a compromise
between simplicity and effectiveness of the control policy, assuming that the control
aims at keeping the water level as close as possible to the median level  (N1+N2)/2,
and consequently the pumps are opened (resp., closed) by a quantity which is
essentially proportional (considering also the current estimated steam output) to the
difference between the current and the desired water level. The definition of an
optimum control algorithm for the water level falls in the area of control theory and
is therefore considered out of the scope of the present exercise. As with many other
features of the modeled system, the specification can be made parametric w.r.t. the
policy for controlling the water level by means of the previously mentioned
constructs of genericity and inheritance.



Errors in measuring. Every measurement is subject to some error, and the
values obtained by the sensors for the water level and the steam flow can be no
exception. The informal specification document [AS], however, does not mention
possible inaccuracies in these measures. Consequently, we assume that the minimal
and maximal limit quantities M1 and M2 for the water level are chosen in a
conservative way as to account for any possible inaccuracy in the measurement of
the controlled quantities, and thereafter we reason under the assumption that such
measures are exact.

Modeling the environment. In the initial phase of requirements elicitation and
formalization it is often very useful to model in the adopted formalism not only the
device or system to be designed but also the environment where it will be put into
operation when implemented. Therefore in our specification we model not only the
controller but also the operator, the transmission system, the equipment, and the
interactions among them. Then for the sake of brevity we mostly concentrate on the
controller, since this component will be the actual object of the design activity. We
point out,  however, that the specification language can be usefully employed to
describe relevant properties of the environment or of its interaction with the control
program. In section 3 we provide an example thereof by describing a hypothesis on
the functioning of the water level measuring device.

Parameters of the steam boiler plant. Several significant physical quantities of
the equipment (such as boiler capacity, maximal and minimal limit and normal
water quantity, maximal quantity and maximal gradient of increase or decrease in
steam flow, nominal capacity of pumps) are mentioned in the informal specification
document [AS], and the obvious fact that they may change from one plant to another
is dealt with by indicating their value symbolically through suitable symbolic
constants. Other parameters such as the number of pumps in the equipment, or the
period of the operation cycle of the control program are probably assumed to be less
likely to change and therefore are indicated as fixed values (there are 4 pumps and
the cycle period is 5 seconds). To obtain maximum generality, flexibility and
reusability of specifications (we could mention a “specifying for change” attitude)
our specifications are generic and therefore parametric with respect to all the above
mentioned quantities, which are subject to change due to the physical dimensioning
of the various plants or are determined by design choices influenced by
technological factors (e.g., the cycle period).

Description of the initialization mode. We found it convenient to distinguish
three phases in the initialization mode (i.e., waiting, adjustingWaterLevel,
programReady) to describe in a simpler and more explicit way the sequence of
actions carried out by the control program when operating in this mode. To fully
comply with the informal specification document [AS], however, this separation of
 phases is confined in an inner module of the controller component and does not
emerge in the communication between the controller and the equipment.

2.2 Modular Structure of the Specification
Object oriented methodology comprises classical modularization criteria, therefore
our specification is divided into modules according to the principles of



encapsulation and information hiding, separation of concerns, maximization of
intra-module cohesion and minimization of inter-module coupling (and hence of
module interfaces). Moreover, the typical object-centered view (emphasizing the
physical and logical components of the system) is blended with a more functional
view (modules called controller, management, diagnosis are introduced) so that
system functions can be described in a general and abstract way. As it often
happens, the modular structure supports abstraction and reuse, but it also facilitates
presentation and understanding, therefore the specification is highly structured,
especially in the part regarding the pumps.
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Fig. 1 Graphical representation of class clSteamBoiler



The highest level in the module hierarchy is shown in Fig. 1, representing class
steamBoiler that includes modules for the system physical components (equipment,
transmissionSystem, controller, and operator) and the connections among them
consisting of the information exchanged and the delivered commands. In Appendix
2 “(see CD-ROM Annex GM.2)” we report the detailed graphic representation and
the textual declaration of the same class. It can be noticed that in the equipment
module the local item level models the actual physical water level, which is in
principle distinct from the measured level as perceived by the controller through the
sensors. Modeling as separate entities the actual and the measured water level will
allow us, in Section 4, to formalize some remarks on the reliability of performed
measures and on the safety of the control algorithms based on them.

For brevity we do not model other features of the environment, and in the
remaining parts of the present specification we focus on the controller, whose
structure is shown in the graphical representation of class clController of Fig. 2, and
whose textual declaration is in A.3 “(see CD-ROM Annex GM.3)”. This figure
shows the components steam and level, which concern the measurement and control
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of the quantity of water in the boiler and of the exiting steam. Module pumps
specifies control and management of the pumps. Module manager specifies the
operation of the control program, as described in Section 3 of the informal
specification document [AS], with all actions to keep the water level within the
required bounds and to face sensor and actuator faults by operating in the degraded
or rescue mode.

Fig. 3 depicts the clPumps: its textual version is in Appendix 5 “(see CD-ROM
Annex GM.5)”: it includes an array of modules, called pumpSet, containing
instances of class clPumps in a number equal to the number of pumps actually
present in the plant (notice that the specification is generic with respect to this
number). The pumpManager component includes the specification of how to govern
pumps, i.e., the indication of pumps opening or closing depending on the current
required throughput and on the estimated current state of the pumps. Let us
anticipate that the commands to the pumps, the diagnosis of their state, and the
messages sent to the equipment are determined in the clPump class, which will be
described briefly in the next section.
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2.3 The Pump Module
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Fig. 4 The class clPump

Fig. 4 reports the graphical representation of the class clPump. The textual
declaration can be found in Appendix 6 “(see CD-ROM Annex GM.6)”. This class
models a single pump of the plant, and there are many instances of it in the array of
modules included in class clPumps (4 in the case considered by [AS]). The class is
organized into three modules: module diagnosis specifies how faults of the pump or
of its controller are determined; module decision characterizes the opening or
closing commands to the pump according to its estimated state and to its desired
state as determined by the pumpManager module; module messages defines the
messages to be exchanged with the equipment regarding faults and repairs, in
interaction with the diagnosis module.
Performing diagnosis on the state of the pumps and its controller is a crucial
operation because the correct plant operation and control depends on the accuracy
with which the actual state of the various devices can be estimated. For this reason
we specify three possible ways of performing this operation. Here we report only the
first one, that is simply a formalization of the criterion reported in [AS].
pumpDiagnosis:
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We propose other two ways for pump fault diagnosis in Appendix 7 “(see CD-
ROM Annex GM.7)”. The complete specifications of decision and messages
modules are respectively in Appendix 8 “(see CD-ROM Annex GM.8)” and in
Appendix 9 “(see CD-ROM Annex GM.9)”.

2.4 The Level and Steam Modules
The classes clSteam and clLevel, which we report in Appendix 4 “(see CD-ROM
Annex GM.4)”, specify operations similar to those described for the pumps by the
class clPumps, i.e., operations regarding monitoring of the device state, exchange of
messages with the equipment regarding faults, detection of transmission faults, and
computation of estimated values for the water level and the exiting steam.

2.5 The manager Module
The class clManager, reported Appendix 11 “(see CD-ROM Annex GM.11)”,
specifies the module manager of Fig. 2 and describes general operations regarding
the various modes of operation, the detection of transmission errors, and the
government of the water level.
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We adhere to the description of the modes of operation employed in the
informal specification document, therefore we model the principal structure of the



control program as a finite state machine, whose states and transitions are
represented in Fig. 5. The transitions of this automaton can be formally described in
TRIO in a rather obvious and uniform way, which we just exemplify with this
axiom:
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3. Use of the Specification
The obvious purpose of any specification is to express requirements and to serve as
a reference for the successive phases of design, implementation, verification, and
maintenance. Before these are undertaken, a very useful activity is often performed
(especially when the specified systems are particularly complex or critical), namely
the validation activity, which consists of establishing whether the actual
requirements were indeed captured and correctly expresses by the specification.
Formal methods, being based on a solid mathematical foundation, have a clear and
unambiguous semantics, so that the validation and verification activities can be
effectively supported by (semi)automatic software tools that can greatly enhance the
effectiveness and the practical impact of such activities. This is the case with TRIO,
where an environment of tools for editing specification, validating them and
verifying design and implementation has been developed in recent years at
Politecnico di Milano. 

Broadly speaking, the validation activity can take in TRIO the form of history
checking, history generation (i.e., simulation), and property proving.

When performing history checking [F&M94] the designer invents (with the aid
of a suitable tool) histories of the modeled system (i.e., sequences of events, system
configurations, and values for the significant quantities that represent a hypothetical
trace of a system execution) that in his/her view correspond to a possible behavior of
the specified system where the requirements and properties are apparent. For
instance, possible histories of the steam boiler could include sequences of faults in
the pumps, and the actions of the controller to deal with them, possibly in presence
of particularly high (or reduced) steam production. Such histories are then checked,
i.e., confronted for consistency with the specification, by considering each history as
the frame of an interpretation structure for the TRIO  formulas. The results of
history checking are useful both to the final user, who verifies that his/her
expectations on the system behavior are sensible, and to the specifier, who controls
that his/his understanding of the requirements are correct and have been effectively
formalized by means of the formal notation.

A more sophisticated method of validation consists of simulating the modeled
system by generating (with the support of suitable specialized interpreters, see
[MMM95]) histories of the specified systems under particular constraints that may
represent an initial system configuration or particular combination of input events
coming from the environment and are assumed to stress particular system
functionalities that the designer wants to explicitly visualize.



The most complex, general, and effective validation activity is obtained by
proving properties that are supposedly ensured by the requirements as expressed in
the formal specification. From a logical viewpoint, as it happens in the case of
TRIO, such properties are theorems that are derived in a theory consisting of the
TRIO general axioms augmented with the axioms that are included the specification
document. The derivation of such theorems can be made manually using the
axiomatic system presented in [FMM94] or with the support of a theorem proover,
such as PVS, where the TRIO semantics and axiomatic system have been suitably
encoded, as it was done in [Jef95]. Typical properties that one would like to derive
for a time critical system would be liveness, absence of deadlock, or the ability of
the system to control the environment by maintaining invariant in time a given
configuration or relation among components or physical quantities. As an example
thereof, we would like to express in TRIO a property of (physical) safety that was
never explicitly formalized in the specification presented in the preceding sections,
but is clearly implied as the main purpose of the designed controller. As anticipated
in the remarks of section 2.1, we state such safety requirement under suitable
assumptions regarding the correct functioning of the measuring and transmission
devices that the controller uses during operation. A first assumption is that the
transmission system component is correct (although not necessarily permanently
available), that is, any received data are equal to those transmitted. This assumption
is easily formalized through the following simple TRIO formula

l(v) → lE(v)

asserting that if a value is received by the controller then it is the same value that
has been measured (and then sent) by the physical equipment.

The second assumed property regards the water level measuring device and
asserts that when it is broken (i.e., its measurement is significantly different from
the actual water level) then it gives a value that is out of the possible range of
measures. This is formalized is TRIO as follows

lE(v) ∧ v_equipment.level → (v<0 ∨ v>C)

or equivalently, and perhaps in a more intuitive manner, as

lE(v) ∧ 0≤v≤C → v = equipment.level

This assumption ensures that the measurements from the water level sensor are
reliable, in that if they are incorrect then they are out of range and thus can be
immediately recognized as such. Under the two above hypotheses the fundamental
property of physical safety can be stated as follows.
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The above formulas implies that the controller will go into the emergency stop
mode before the water level reaches the extreme levels M1 and M2 that could be
dangerous for the plant.

For the sake of brevity we will not go into the formal proof of the above
property, but we report some remarks on the degree of confidence possibly provided
by such proofs (such remarks are intended as an illustration and complement of
those reported in section 2.1). The hypotheses under which the safety property holds
(as expressed by the premise of the external implication in formula ‡) are not
themselves absolutely true, because sensors are, like any other physical device,
subject to wear and could become unreliable, while communication channels are
subject to (at least) transient transmission errors due, e.g., to interferences. There
exist however techniques for obtaining fault tolerance in the measure of physical
quantities (e.g., device redundancy and majority voting) and in data transmission
(e.g., theory of self correcting codes and protocols) such that the probability of
faults can be made arbitrarily low (of course at the price of devoting sufficient
resources to that purpose). As a result, the controlled plant can be shown to be safe
“with a probability 1-ε”: this does not mean that the control algorithm or the proof
of its correctness could be wrong, but that there exists a certain degree of
uncertainty on the used input data.

In the TRIO framework, verification can take the two main forms of formal
proofs and testing. Performing the formal proof of the correctness of an
implementation w.r.t. its implementation requires that all relevant features of the
hardware system software employed are themselves formalized, as outlined in
[M&M94], and such proofs can be performed, as noted above, both by hands or with
the support of a theorem prover.

Several years of experience of the authors in cooperation between academia and
industry have however shown that formal proofs are not considered as a practically
convenient technology, whereas various forms of testing are much more appreciated
and widely employed. Formal specifications in TRIO can be used to support the
generation of functional test cases, that include both data to be input as stimuli to
the system to be tested, and expected results of the experiments, to be compared
with the actual reactions of the tested system. Functional testing (often referred to in
handbooks as black box testing) verifies the requirements of the system under test
without any reference to the actual hardware/software structure of the
implementation; it should be considered a complement, not an alternative, to
structural, white box testing, which is based on the structural properties of the
implementation (e.g., control flow in software code). The activity of test case
generation from TRIO specification is supported by a tool based on interpretation
algorithms similar to those for system simulation and, moreover, support the
annotation of test cases with information useful for the testing experiment
[MMM95]. The algorithms for test case generation are computationally intensive, so
that their practical employment can become unfeasible for large formulas, like those
occurring in specifications of industrially sized applications. For this reason,
strategies for generating test cases starting from TRIO+ specification have been
defined, that exploit the modular structure of specifications and take advantage of



the direction of the connections among modules to follow logical or functional
dependencies among data, thus making the generation process more easy,
transparent to the user, and effective [MMS96].

The specification method through TRIO+ classes exemplified in section 3 and
the validation and verification activities discussed in the present section have been
applied to several case studies [CSt90, CSt92] and industrial projects: among these
we mention a project concerning the monitoring and control through semaphore
systems of surface traffic in densely populated urban areas [NUS05] and an
application (whose development was carried out in the framework of an ESSI
project) regarding the balancing of the load among power generators in a pondage
power plant of ENEL, the Italian energy board [BC&95].

The latter application of the TRIO language and method covered all system
development phases, from requirement elicitation down to design and coding. In
particular, it is interesting to consider how system design was obtained by
systematic transformation and refinement of the specification. The software
implementation was obtained by coding the features described in the main TRIO+
class and its composing modules into a set of modules of MOOD [Bas94, MR94], an
object oriented language for real-time concurrent system design. During the design
particular attention was devoted to maintaining a close correspondence between the
specification objects and the design objects. This was highly facilitated by the fact
that both TRIO and MOOD are based on object-oriented paradigms. The refinement
of specification into executable code was obtained systematically by transforming
the TRIO+ classes into MOOD classes, whose local variables were directly derived
from the local items of the corresponding TRIO+ class; moreover, TRIO+
connections were implemented as asynchronous communication channels among
MOOD classes (a construct directly available in the chosen programming language).
It is to be noticed that the fastest required reaction times of the implemented
systems were of the order of a few milliseconds, while in the steam boiler system
the controller activation cycle is assumed to be 5 seconds, therefore the above
described, trivial implementation technique could be certainly applied to the present
case.

4. Evaluation and Comparison
Here we answer a few questions asked by the editors of the book with the purpose of
providing some comparison criteria among the various solutions to the proposed
problem.
1. The controller component is specified in full detail, while the other two
components (the physical plant and the transmission system) are left unspecified.
The controller is specified both in a formal and rigorous way, by means of TRIO
formulas, and verbally, by means of suitable comments in natural language attached
to the formulas. Note that the specification is parametric with respect to several
features of the controller, such as the number of pumps, the physical constants of the
plant, and the strategies for fault diagnosis in the pumps.



2. No; TRIO is a formal notation mainly devoted to requirements elicitation and
specification, system validation and verification, therefore no specific guidelines are
provided, in general, to support design and implementation.
3. Among the numerous proposed solutions those who are more closely comparable
to ours are those that share its overall approach, i.e., use a descriptive notation (e.g.,
mathematical logic) to specify the requirements in the form of constraints or
properties but do not provide any indication of the system architecture nor its
implementation of terms of state-transition systems. Among these we mention [S],
“see Chapter S, this book” which uses an equational style of specification and does
not provide specific indications for the design and implementation, [OKW], “see
Chapter OKW, this book” which extensively adopts object-oriented concepts and
methods, [CW1] “see  Chapter CW1, this book” [LM], “see  Chapter LM, this
book” and [LW], “see  Chapter LW, this book” which are based on (temporal) logic,
[BCPR] “see  Chapter BCPR, this book” and [GDK], “see  Chapter GDK, this book”
which adopt a specification style based on an implicit state and use extensively first
order logic to describe system properties.
Conversely, the complementary solutions are those where an operational approach is
adopted, whereby the system is modeled by means of a (possibly abstract) state
machine and its behavior is described through next state functions that in some case
are characterized in a rather elaborate or indirect way. Among those we mention
[BBGDR] “see  Chapter BBGDR, this book” and [HW], “see  Chapter HW, this
book” which are based on a state transition machine providing immediate support to
design and implementation, [VH] “see  Chapter VH, this book”, which adopts an
operational approach with refinements and an automatic support to proof of
consistency among different refinement levels, [CD] “see  Chapter CD, this book”
and [DC], “see  Chapter DC, this book” which are based on an execution model
rather closed to a programming language, [WS], “see  Chapter WS, this book”
which, being based on process algebras, is directly executable.
4. We spent approximately 1 person week to read and understand the informal
description document [AS], and 2 person weeks to write the specification in TRIO+.
We believe that a general answer to this question can be hardly provided. The time
and effort needed to learn the TRIO language and method depends significantly on
the educational background of the learner. A few hours could suffice a person with a
deep knowledge of first order mathematical logic, while there could be no upper
limit for a refractory programmer who has a very limited mathematical background.

5. A rather limited knowledge of TRIO and TRIO+ should suffice, since only the
basic operators and constructs are applied in the proposed solution.
A precise answer to the questions b. and c. meets the same difficulties as in point 4.
above, and similar remarks apply.
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Appendices

A.1. A Brief Overview of TRIO and TRIO+
TRIO is a first order logical language, augmented with temporal operators which
permit to talk about the truth and falsity of propositions at time instants different
from the current one, which is left implicit in the formula. Unlike classical temporal
logic, TRIO allows the specifier to express strict timing requirements by means of
two basic operators—Futr and Past—which refer to time instants whose distance, in
the future or in the past, is specified precisely and quantitatively. We now briefly
sketch the syntax of TRIO and give an informal and intuitive account of its
semantics; detailed and formal definitions can be found in [GMM 90].

The alphabet of TRIO is composed of variable, function, and predicate names,
plus the usual primitive propositional connectors ‘¬’ and ‘→’, the derived ones ‘∧’,
‘∨’, ‘↔’, ..., and the quantifiers ‘∃’ and ‘∀’, and plus temporal operator symbols
Futr and Past. The language is typed, in that a domain of legal values is associated
with each variable, a domain/range pair is associated with every function, and a
domain is associated with every argument of every predicate. Among variable
domains there is a distinguished one, called the Temporal Domain, which is
numerical in nature: it can be the set of integer, rational, or real numbers.

Variables, functions, and predicates are divided into time dependent and time
independent ones. This allows for representing change in time. Time dependent
variables represent physical quantities or configurations that are subject to change in
time, and time independent ones represent values unrelated with time. Time
dependent functions and predicates denote relations, properties, or events that may
or may not hold at a given time instant, while time independent functions and
predicates represent facts and properties which can be assumed not to change with
time.

TRIO formulas are constructed in the classical inductive way. A term is defined
as a variable, or a function applied to a suitable number of terms of the correct type;
an atomic formula is a predicate applied to terms of the proper type. Besides the
usual propositional operators and the quantifiers, one may compose TRIO formulas
by using primitive and derived temporal operators. There are two temporal
operators, Futr and Past, which allow the specifier to refer, respectively, to events
occurring in the future or in the past with respect to the current, implicit time
instant. They can be applied to both terms and formulas, as shown in the following.
If s is any TRIO term and t is a term of the temporal type, then

Futr (s, t) and Past (s, t)

are also TRIO terms. The intended meaning is that the value of Futr(s, t) (resp.
Past(s, t)) is the value of term s at a distance of t time units in the future (resp. in the
past) with respect to the current time instant. Similarly, if A is a TRIO formula and t
is a term of the temporal type, then



Futr (A, t)and Past (A, t)

are TRIO formulas too, that are satisfied at the current time if and only if property A
holds at the instant which is t time units ahead (resp., behind) the current time. On
the basis of the primitive temporal operators Futr and Past, numerous derived
operators can be defined for formulas, including the following list.

Operator Definition Explanation
AlwF(A) ∀t (t > 0 → Futr(A, t)) A will always hold
AlwP(A) ∀t (t > 0 → Past(A, t)) A has always held
Alw(A) AlwP(A) ∧ A ∧ AlwF(A) A always holds
Som(A) ¬ Alw (¬ A ) Sometimes A holds
Lasts(A, d) ∀d'(0<d'<d → Futr(A, d')) A will hold over a period of length

d
Lasted(A, d) ∀d'(0<d'<d → Past(A, d')) A held over a period of length d in

the past
Until(A1, A2) ∃t (t>0 ∧ Futr(A2, t) ∧ Lasts(A1, t) ) A1 will hold until A2 starts to

hold
Since (A1, A2) ∃t (t > 0 ∧ Past (A2, t) ∧ Lasted (A1, t) ) A1 held since A2 became

true
UpToNow (A) ∃δ ( δ > 0 ∧ Past (A, δ) ∧ Lasted (A, δ) ) A held for a

nonnull time interval that ended at
the current instant

Becomes (A) A ∧ UpToNow (¬A) A holds at the current instant but it
did not hold up to now

Notice that for the operators expressing a duration over a time interval (for
example Lasts) we gave definitions where the extremes of the specified time
interval are excluded, i.e. the interval is open. Operators including either one or both
of the extremes can be easily derived from the basic ones we listed above. For
notational convenience, in order to indicate inclusion or exclusion of the lower or
upper bound of the interval, we append to the operator’s name two subscripts, ‘i’ or
‘e’, respectively. For example, Lastsie and Sinceie are defined as follows.

Lasts ie (A, t)   Lasts (A, t) ∧ A

Sinceie (A1, A2)   ∃t (t > 0 ∧ Past (A2, t) ∧ Lasted (A1, t) ∧ Past (A1, t))
TRIO has proved to be an adequate language for specifying real-time systems

features. However, its use becomes difficult when considering large and complex
systems, because TRIO specifications are very finely structured: the language does
not provide powerful abstraction mechanisms, and lacks an intuitive and expressive
graphic notation.

To support specification in the large, we enriched TRIO with concepts and

constructs from object oriented methodology, yielding a language called TRIO+

[M&S94]. Among the most important features of TRIO+ are the ability to partition
the universe of objects into classes, inheritance relations among classes, and mecha-



nisms such as genericity to support reuse of specification modules and their

top-down, incremental development. TRIO+ maintains an intensional notion of

object identity: we require an object described by a TRIO+ specification to be
identified with the history of its evolution, and an instance of a class for a composite
system to include instances of the system’s components. Structuring the
specification into modules supports an incremental, top-down approach to the
specification activity through successive refinements, but also allows one to build
independent and reusable subsystem specifications, that could be composed in a
systematic way in different contexts. Also desirable is the possibility of describing
the specified system at different levels of abstraction, and of focusing with greater
attention and detail on some more relevant aspects, leaving unspecified, or less
formalized, other parts that are considered less important or are already well under-
stood.

TRIO+ is also endowed with an expressive graphic representation of classes in
terms of boxes, arrows, and connections to depict class instances and their
components, information exchanges and logical equivalence among (parts of)
objects. In principle, the use of a graphic notation for the representation of formal
specifications does not improve the expressiveness of the language, since it provides
just an alternative syntax for some language constructs. In practice, however, the
ability to visualize constructs of the language and use their graphic representation to
construct, update or browse specifications can make a great difference in the
productivity of the specification process and in the final quality of the resulting
product, especially when the graphic view is consistently supported by means of
suitable tools, such as structure-directed editors, consistency checkers, and report
generators.

In our opinion this is the reason of the popularity of the so-called CASE tools,
many of which are based on Data Flow Diagrams or their extension. These tools
comprise informal or semi-formal languages as their principle descriptional
notation, and exhibit problems such as ambiguity, lack of rigor, and difficulty in
executing specifications, but nevertheless they can be very helpful in organizing the

specifier’s job. On the other hand TRIO+ aims at providing a formal and rigorous
notation for system specification, which includes effective features and constructs to
support modularization, reuse, incrementality and flexibility in the specification
activity.

A TRIO+ specification is built by defining suitable classes. A class is a set of
axioms, describing the system, constructed in a modular, independent way,
following information hiding principles and object oriented techniques. Classes may
be simple or structured, may be generic and may be organized in inheritance
hierarchies.

A simple class is a group of TRIO axioms, preceded by the declaration of all
occurring predicates, variables, and functions. A class may have a meaningful
graphic representation as a box; An example of simple class is the specification of a
simple pump, as showed in Fig. 1 for textual part and in Fig. 2 for the graphical
representation.



class clSimplePump -- class header
   visible cp, op -- class interface
   temporal domain real -- the temporal domain to be considered in the specification
   TD Items -- the declarations of time dependent predicates, variables and functions

predicates cp, op,     -- close and open messages
expectedOpen

vars expectedState:  {open, closed }
axioms -- the axioms of the specification
      vars t: real -- the time independent variables, the only ones to be quantified
     open:    expectedOpen ↔ Sinceie ( not cp , op )

state:    expectedOpen  → expectedState =open ∧
¬ expectedOpen  → expectedState =closed

end clSimplePump

Fig. 1.  The class clSimplePump.

op

cpexpectedOpen

clSimplePump

expectedState

Fig. 2. Graphical representation of class clSimplePump.

The class header is followed by the visible clause, which defines the class
interface. In the graphic notation the names of the items are written on lines internal
to the box;  if an item is visible, then  the corresponding line continues outside the
box. The axioms are TRIO formulas and they are prefaced with an implicit
universal classical and temporal quantification, i.e., all free variables are universally
quantified and an Always temporal operator precedes the formula. A name can
precede an axiom, to be used as a reference for axiom redefinition in inheritance.

TRIO+ is also endowed with an expressive graphic representation of classes in
terms of boxes, arrows, and connections to depict class instances and their
components, information exchanges and logical equivalence among (parts of)

objects. Another TRIO+ facility allows the specifier to describe real world systems
that contain groups of identical parts. These configurations are easily described in

TRIO+, by defining arrays of modules. TRIO+ is also provided with a genericity
mechanism. Generic classes have one or more parameters that can represent classes
of component modules, or scalar constants, or limits of range bounds. Finally, an
inheritance construct provides the possibility for a class—also named heir class—to
receive attributes from other classes.

For the sake of brevity we do not illustrate the features of the above constructs
nor exemplify their use: we assume that the parts of specification in the next
sections that employ them are sufficiently self explaining, and refer the interest
reader to [M&S94].



A.2. Specification of the Steam Boiler
In this appendix we report the complete layout of the module clSteamBoiler in
TRIO+.

Then we report the textual declaration of the same class, where for brevity most
connection clauses have been omitted, since they already appear explicitly in the
graphical class representation.

class clSteamBoiler
temporal domain integer
connections { (transmissionSystem.mE equipment.mE)

...
(controller.m transmissionSystem.m)
...
(operator.start controller.start)

equipment

mE

PRE

vE

opE
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pfdE

pcfdE

lfdE

sfdE

praE

pcraE
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sbwE

purE

psE

pcsE

lE

sE

prE

pcrE

lrE

srE

pfaE

pcfaE

lfaE

sfaE

m

PR
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pfd

pcfd

lfd

sfd

pra

pcra

lra

sra

sbw

pur
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pcs

l

s

pr

pcr

lr

sr

pfa

pcfa

lfa

sfa

transmission
System

controller

clSteamBoiler

operator

start

stop

level



(operator.stop controller.stop) }
TI Items

consts
C: real -- maximal capacity of the steam-boiler
M1,M2: real  -- minimal and maximal limit of quantity of water
N1,N2: real  -- minimal and maximal normal quantity of water
W: real  -- maximal quantity of steam
U1,U2: real  -- maximum gradient of increase and decrease
P: real  -- nominal throughput of the pumps
nPumps: integer  --pumps number
∆: real -- cycle period in seconds

modules 
equipment: clEquipment
transmissionSystem: clTransmissionSystem
operator: clOperator
controller: clController[nPumps, C, M1 , M2 , N1 , N2 , W, U1 , U2, P, ∆]

end clSteamBoiler

It can be noticed that the steamBoiler class constitutes a closed system, in that there
are no externally visible items; the reason for this is that, as anticipated in Section
2.1, the specification models not only the controller to be designed, but also the
surrounding environment.



A.3. Controller Module in the Steam Boiler

In this appendix we report the detailed description of controller module. The class,
as well as its internal modules, is generic with respect to the parameters of the plant
and of the controller program (pumps number, constants C, M1 , M2 , N1 , N2 , W, U1

, U2, P, and cycle period ∆)

sra

sfd

sfa

sr

s

steam

manager

level
pumps

l  lfd   lfa   lr   lra

ps

pcs

pr
pra

pcfa

start  stop

required
Throughput

pumpsBroken

pumpsTE clController

state

K

calcThroughput

transmissionError

v
pur

m

PR
sbw

pa1

pa2

va1

va2

qa1  qa2

steamBroken
steamTE

levelBroken

levelTE

criticalLevel

pcr

pcra

pfd

pfa

pcfd

class clController [pumpsNumber, C, M1 , M2 , N1 , N2 , W, U1 , U2, P, ∆]
visible  -- messages sent by controller

manager.m, manager.PR, manager.v, pumps.op, pumps.cp, -- commands
pumps.pfd, pumps.pcfd, level.lfd, steam.sfd, -- failures detection by

controller
pumps.pra, pumps.pcra, level.lra, steam.sra -- acknowledgments

    -- messages received by the controller
manager.sbw, manager.pur, -- commands
pumps.ps, pumps.pcs, level.l, steam.s, -- physical units states or measures
pumps.pr, pumps.pcr, level.lr, steam.sr, -- repair messages
pumps.pfa, pumps.pcfa, level.lfa, steam.sfa, -- acknowledgments



manager.start, manager.stop -- from operator
modules 

manager: clManager [pumpsNumber, M1 , M2 , N1 , N2 , U1 , U2, W, P,
∆]

steam: clSteam [ W, U1 , U2, ∆]
level: clLevel [ C, U1 , U2, ∆]
pumps: clPumps[pumpsNumber, P]

temporal domain integer
connections {

(steam.steamBroken  manager.steamBroken) --between manager and steam
...
(level.levelBroken  manager.levelBroken) --between manager and level
...
(pumps.pumpsBroken manager.pumpsBroken)--between manager and pumps
...}

end clController

A.4. Level And Steam Module in Controller

class clSteam[ W, U1 , U2, ∆]
visible s, sr, sfa, sfd, sra, va1, va2, steamTE, steamBroken
temporal domain integer
TD Items

predicates
s(real), --STEAM(v)
sr, --STEAM_REPAIRED
sfa, --STEAM_FAILURE_ACKNOWLEGDEMENT

(indicated in [AS] with
STEAM_OUTCOME_FAILURE_ACKNOWLE
GDEMENT)

sfd, --STEAM_FAILURE_DETECTION
sra, --STEAM_REPAIRED_

ACKNOWLEGDEMENT
steamTE, steamBroken

vars va1, va2: real
axioms

vars
v: real

-- diagnosis: steam is broken iff already broken and not repaired or the
measure is out of computed dynamic



diagnosis:

steamBroken
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-- computed maximal and minimal flow of steam if the steam is broken:

calcWithBroken: steamBroken
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-- if the steam isn't broken va1 and va2 are equal the measured flow:
calc: ¬steamBroken →∀v(s(v) → va1=va2=v)
-- steam failure detection message as soon as steam becomes broken
failureDetection: Becomes(steamBroken) →Until(sfd,sfa)
-- module sents a sfd message only if a
sfd→Since(¬sfa,Becomes(steamBroken)
-- acknowlegdement of steam repair
repairAck: sra↔sr
-- transmission error

transmissionError: steamTE
v s v

sr UpToNow steamBroken
sfa UpToNow sfd

↔
¬∃ ∨

∧ ¬ ∨
∧ ¬















  ( )
( )

( )
end clSteam

class clLevel [C, U1 , U2, ∆]
visible l, lfd, lfa, lr, lra, qa1, qa2, levelTE, levelBroken
temporal domain integer
TD Items

predicates
l (real), --LEVEL
lr, --LEVEL_REPAIRED
lfa, --LEVEL_FAILURE_ACKOWLEGDEMENT
lfd, --LEVEL_FAILURE_DETECTION
lra, --LEVEL_REPAIRED_
ACKNOWLEGDEMENT
levelTE, levelBroken

vars
qa1, qa2: real

axioms
vars
v: real

-- diagnosis: level is broken iff already broken and not repaired or the
measure is out of computed dynamic
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-- computed maximal and minimal quantity of water if the level is
broken:
calcWithBroken:

levelBroken
qa Past qa va U pa

qa C Past qa va U pa
→
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-- if the level isn't broken qa1 and qa2 are equal the measured quantity:
calc: ¬levelBroken →∀v(l(v) → qa1=qa2=v)
-- level failure detection message as soon as level becomes broken
failureDetection: (Becomes(levelBroken) →Until(lfd,lfa))

∧ (lfd→Since(¬lfa,Becomes(levelBroken))
-- acknowlegdement of level repair
repairAck: lra↔lr
-- transmission error

transmissionError: levelTE
vl v

lr UpToNow levelBroken
lfa UpToNow lfd

↔
¬∃ ∨

∧ ¬ ∨
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end clLevel



A.5. Pumps Module in Controller

clPumps

pumpSet

pte

estimatedState

desiredState

pumpsManager

npb

npr

npa

npo
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pa2

pumpsBroken

pumpsTE

required
Throughput

op        cp
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pr
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pcr

pcra

pfd

pfa

pcfd

pcfa

class clPumps [pumpsNumber, P]
visible pa1,pa2, pumpsTE, pumpsBroken, requiredThroughput, op, cp, ps, pcs,

pr, pra, pcr, pcra, pfd, pcfd, pfa, pcfa
modules pumpSet: array [1..pumpsNumber] of clPump

 pumpsManger: clPumpsManager [pumpsNumber, P]
temporal domain integer
connections {

(pumpsManager.pa1 pa1) --from or to pumpsManager
...
(op.pumpSet op) -- from ot to pumpSet
(cp.pumpSet cp)
...
(pumpSet .pte pumpsManager.pte)--between pumpSet and pumpsManager
...}

TD Items
predicates

op(1..pumpsNumber), --OPEN_PUMP(i)
cp(1..pumpsNumber), --CLOSE_PUMP(i)
ps(1..pumpsNumber, {open,closed}), --PUMP_STATE(n,b)
pcs(1..pumpsNumber, {open,closed}), --PUMP_CONTROL_STATE(n,b)
pr(1..pumpsNumber), --PUMP_REPAIRED
pra(1..pumpsNumber), -- PUMP_REPAIRED_ACKNOWLEDGEMENT
pcr(1..pumpsNumber), -- PUMP_CONTROL_REPAIRED



pcra(1..pumpsNumber), --
PUMP_CONTROL_REPAIRED_ACKNOWLEDGEMENT

pfd(1..pumpsNumber), -- PUMP_FAILURE_DETECTION
pcfd(1..pumpsNumber), -- PUMP_CONTROL_FAILURE_DETECTION
pfa(1..pumpsNumber),  -- PUMP_FAILURE_ACKNOWLEDGEMENT
pcfa(1..pumpsNumber), --

PUMP_CONTROL_FAILURE_ACKNOWLEDGEMENT
pumpsTE,  -- transmission error detection
pumpsBroken -- at least a pump is broken

vars
requiredThroughput: positive real  --
pa1: positive real-- minimal adjusted total throughput of pumps
pa2: positive real-- maximal adjusted total throughput of pumps

end clPumps

A.6. Single Pump Module in Pumps Module

ps
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pr
pcr
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pcb

estimatedState     desiredState

diagnosis

decision

m
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a
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e
s

expectedOpen

clPump

class clPump
visible ps, pcs, pr, pcr, pra, pcra, pfd, pcfd,

pfa, pcfa, op, cp, estimatedState, desiredState, pte
modules messages:clPumpMessagges

decision: clDecision
diagnosis: clDiagnosis

connections {
(ps diagnosis.ps) --from or to diagnosis
...
(pr messages.pr) --from or to messages
...
(decison.op  op) --from or to decision



...
(diagnosis.pb messages.pb) -- between messages and diagnosis
...
(decision.op diagnosis.op) --between decision and diagnosis
...
}

temporal domain  integer
TD Items

predicates
op, cp, ps({open,closed}), pcs({open,closed}),  pr, pra,
pcr, pcra, pfd, pcfd, pfa, pcfa, pte
vars
desiredState: {open, closed}
estimatedState: {open, closed, broken}

end clPump

A.7. Diagnosis Module in Pump Module

Module diagnosis specifies how faults of the pump or of its controller are
determined.

class clDiagnosis
visible ps, pcs, pr, pcr, op, cp, pb, pcb, estimatedState
TD Items

predicates  expectedOpen --true if the pump would be open
ps ({open, closed}) --state of the pump in input
pcs({open, closed}) --state of the pump control in input
pr --message indicating that the pump has been repaired
pcr --message indicating that the pump control has been repaired
op -- the pump receives a open command
cp -- the pump receives a close command
pb -- diagnosis estimates the pump broken
pcb -- diagnosis estimates the pump control broken
estimatedState({open,closed,broken}) --the diagnosed state

axioms
vars

-- the pump would be open iff a open command is not followed by any close
command

open: expectedOpen ↔ Sinceie(¬cp, op)
--the pump is broken iff it was broken and now it isn't repaired or it is in a
state different from the expected one. Idem for the pump control.

pumpDiagnosis: pb
UpToNow pb pr      

ectedOpen ps closed
ectedOpen ps open

↔
∧ ¬ ∨

∧ ∨
¬ ∧















( )
exp ( )

exp ( )
   



pumpControlDiagnosis: pcb
UpToNow pcb pcr
ectedOpen pcs closed

ectedOpen pcs open
↔

∧ ¬ ∨
∧ ∨

¬ ∧















( )
exp ( )

exp ( )
estimatedBroken: pb ∧pcb → estimatedState=broken
estimatedState:

¬ ∧ →
→ = ∧
→ =

















∧
¬ ∧ ¬ ∨

∧ ¬






 →

→ = ∧
→ =

















pb pcb
ps open estimatedState open

ps closed estimatedState closed

pb pcb
pb pcb

pcs open estimatedState open
pcs closed estimatedState closed

( ( ) )
( ( ) )

( ( ) )
( ( ) )

end clDiagnosis
The following class clDiagnosisWithCoherenceControl is a first elaboration on the
diagnosis criteria, and is based on the idea of confronting the state of the pump and
of its controller: a difference between such states is considered a symptom of a fault.
Notice that class clDiagnosisWithCoherenceControl is defined as a heir of class
clDiagnosis, so that it can share with it the interface and the local and exported
items: its definition requires, in practice, only the redefinition of the axioms for the
diagnosis. Class clDiagnosisWithCoherenceControl can be used to define a new
class, call it clPumpWithCoherenceControl, as an heir of clPump where the
diagnosis module (originally defined of class clDiagnosis) is redefined to be of the
class clDiagnosisWithCoherenceControl.

class clDiagnosisWithCoherenceControl
inherit clDiagnosis [redefine pumpDiagnosis, pumpControlDiagnosis]
axioms

pumpDiagnosis: pb

UpToNow pb pr
ectedOpen ps closed

ectedOpen ps open
UpToNow pcb

pcr
ps closed pcs open

ps open pcs open

↔

∧ ¬ ∨
∧ ∨

¬ ∧ ∨
¬ ∨






∧

∧ ∨
∧



























( )
exp ( )

exp ( )
( ) ( ) ( )

( ) ( )
pumpControlDiagnosis:

pcb

UpToNow pcb pcr
ectedOpen pcs closed

ectedOpen pcs open
UpToNow pb

pr
ps closed pcs open

ps open pcs open

↔

∧ ¬ ∨
∧ ∨

¬ ∧ ∨
¬ ∨






∧

∧ ∨
∧



























( )
exp ( )

exp ( )
( ) ( ) ( )

( ) ( )
--the pump is broken iff it was broken and now it isn't repaired or it is in a
state different from the expected one or furthermore pump and pump
control are in different states. The pump state is compared with pump
control state only if pump control was not broken or now repaired. Idem for
the pump control.

end clDiagnosisWithCoherenceControl



The following class clDiagnosisWithAsymmetricControl is a further, last elaboration
on the diagnosis criteria where it is considered highly unlikely that both the pump
and its controller are simultaneously broken and therefore, in case they give
unexpected but mutually consistent indication, it is assumed that only the pump is
broken.

class clDiagnosisWithAsymmetricControl
inherit clDiagnosisWithCoerenceControl [redefine pumpControlDiagnosis]
axioms
pumpControlDiagnosis:

pcb
UpToNow pcb pcr

UpToNow pb
pr

ps closed pcs open
ps open pcs open

↔
∧ ¬ ∨

¬ ∨





∧

∧ ∨
∧























( )
( ) ( ) ( )

( ) ( )
--the pump control is broken iff it was broken and now it isn't repaired or it
is in a state different from the pump state. If pump control and pump states
are equal, but different from the expected state, diagnosis esteems broken
only the pump.

end clDiagnosisWithAsymmetricControl
Notice how the inheritance construct can be used to describe easily any policy

in fault detection reusing as much as possible from previous definitions, and
composing new definitions with preceding ones in a very simple manner.

A.8. Decision Module in Pump Module
The class clDecision reported below simply determines the actual commands to

be sent to the pumps based on its desired state (as decided by the pumpManager
module) and its current state (as determined by the diagnosis module).

class clDecision
visible op, cp, estimatedState, desiredState
temporal domain integer
TD Items

predicates
op -- decision sends a open command
cp -- decision sends a close command
vars
desiredState: {open, closed}
estimatedState: {open, closed, broken}

axioms

closePump: 
Becomes estimatedState broken

estimatedState open desiredState closed
cp

( )=
∨

= ∧ =















↔

openPump: estimatedState=closed ∧ desiredState=open ↔ op
end clDecision



A.9. Pump Messages Module in Pump Module

The class clPumpMessages simply manages the exchange with the equipment of
information regarding the faults of a pump and of its controller.

class clPumpMessages
visible pr, pcr, pra, pcra, pfd, pcfd, pfa, pcfa, pte, pb, pcb
temporal domain integer
TD Items

predicates
pr, pcr, pra, pcra, pfd, pcfd, pfa, pcfa, pte, pb, pcb

axioms
vars
s: {open, closed}
-- pump failure detection message as soon as pump becomes broken
    module sents a sfd message only if a failure was detected

pumpFailureDetection: 

( ( ) ( , ))

( ( , ( ))

Becomes pb Until pfd pfa

pfd Since pfa Becomes pb

→
∧

→ ¬
-- pump control failure detection
pumpControlFailureDetection: (Becomes(pcb) →Until(pcfd,pcfa))

∧ (pcfd→Since(¬pcfa,Becomes(pcb))
-- acknowlegdement of pump repair
pumpRepairAck: pra↔pr
-- acknowlegdement of pump control repair
pumpControlRepairAck: pcra↔pcr
-- transmission error

transmissionError: pte

s ps s s pcs s
pr UpToNow pb

pcr UpToNow pcb
pfa UpToNow pfd
pcfa UpToNow pcfd

↔

¬∃ ∨ ¬∃ ∨
∧ ¬ ∨
∧ ¬ ∨
∧ ¬ ∨
∧ ¬





















( ) ( )
( )
( )
( )
( )

end clPumpMessages

A.10. Pump Manager in Pump Module

Finally, clPumpManager, the class of module pumpManager in the class clPumps
(see Fig. 5) formalizes the very general and abstract requirement that at any time a
number of pumps related to the requiredThroughput must be open, without
indicating any particular policy. As in the case of pump diagnosis, particular criteria
or strategies in alternating pumps can be specified by means of the inheritance
construct (we do not further develop our exercise in this direction for the sake of
brevity).



class clPumpsManager[pumpsNumber, P]
visible pa1, pa2, pumpsTE, pumpsBroken, requiredThroughput, pte,

estimatedState, desiredState
temporal domain integer
TD Items

predicates
pumpsTE,  -- transmission error detection
pumpsBroken -- at least a pump is broken
pte (1..pumpsNumber) -- pte(i) iff  i-st pump in pumpset detects a

transmission error
vars
pa1: positive real
pa2: positive real
requiredThroughput: positive real
npb: [0..pumpsNumber] -- number of broken pumps
npr: [0..pumpsNumber] -- number of  required pumps
npa: [0..pumpsNumber]  -- number of  avaible pumps
npo: [0..pumpsNumber] -- number of open pumps
functions
-- estimated states for every pump in pumpSet from pump modules
estimetedState (1..pumpsNumber) : {open,closed,broken}
-- desired states for every pump in pumpSet in accordance with required

throughput
desiredState (1..pumpsNumber) : {open,closed}
axioms

vars
i,x: 1..pumpsNumber

diagnosis: pumpsBroken ↔ ∃i (estimatedState(i)=broken)
transmissionError: pumpsTE↔ ∃i pte(i)
claculation: pa1=npo*P ∧ pa2=(npo+npb)*P
numberBroken: npb=x ↔ ∃x i (estimatedState(i)=broken)
numberOpen: npo=x ↔ ∃x i (estimatedState(i)=open)
numberAvaible: npa= pumpsNumber -npb
numberRequired: npr=requiredThroughput DIV P

-- if the number of required pumps is greater than the number of
avaible pumps, every pump (not broken) would be open; otherwise
exactly npr pumps would be open

desiderata:
npr≥npa → ∀i (estimatedState(i) ≠ broken → desiredState(i)=open)  ∧
npr<npa → ∃npr i (estimatedState(i) ≠ broken ∧ desiredState(i)=open)

end clPumpsManager



A.11. Manager Module in Controller
The behavior of the Manager component can be modeled by the finite automaton
reported below. This automaton can be translated into a set of TRIO axioms; an
example of this transaction is reported in the class clManager

waiting

adjusting
WaterLevel

program

Ready

normal degraded

pur ∧ ¬levelBroke
∧ ¬steamBroken ∧
¬pumpsBroken ∧
¬stop ∧
¬transmissionError

sbw ∧  (va1 ≠  0 ∨  va2 ≠ 0) ∨
stop ∨ transmissionError

levelBroken ∨ transmissionError ∨ stop

levelBroken ∨
transmissionError ∨ stop

 (pumpsBroken∨ steamBroken )
∧ ¬ levelBroken ∧ ¬D

rescue

qa1≥ N1 ∧
qa2 ≤ N2 ∧

¬  levelBroken ∧
¬transmissionError

∧ ¬ stop

sbw ∧
va1=0 ∧  a2=0 ∧

¬ stop ∧
¬transmissionError

levelBroken ∧ ¬  D

¬pumpsBroken ∧ ¬steamBroken ∧
¬ levelBroken ∧ ¬D

pur ∧ ¬levelBroken ∧
¬transmissionError
∧ ¬  stop
∧   (steamBroken ∨
pumpsBroken)

(pumpsBroken ∨
steamBroken )∧
¬levelBroken ∧
¬D

criticalLevel ∨  stop ∨ transmissionError≡ D

emergency
Stop

D
D

D

levelBroken ∧ ¬  D

class clManager[pumpsNumber, M1 , M2 , N1 , N2 , U1 , U2, W, P, ∆]
visible stop, start, v, pur, m, PR, sbw, steamBroken, steamTE, va1, va2,

levelBroken, levelTE, qa1, qa2, pumpsBroken, pumpsTE, pa1,
pa2, requiredThroughtput

temporal domain integer
TD Items

predicates
m({initialization, normal, degraded, rescue, emergencyStop}), -
-MODE
PR, --PROGRAM_READY
v, --VALVE
pur, -- PHYSICAL_UNITS_READY
sbw, -- STEAM_BOILER_WAITING
start, -- start request by operator



stop -- STOP message by operator
transmissionError -- a transmission failure is dectected
steamTE -- a transmission failure in steam module
levelTE -- a transmission failure in level module
pumpsTE -- a transmission failure in pumps module
steamBroken -- steam is broken
levelBroken
pumpsBroken -- at least a pump is broken
critcalLevel -- the calculated level of water is out of safety
range
vars
state { waiting, adjustingWaterLevel, programReady, normal,
degraded, rescue, emergencyStop} -- actual state
calcThroughput : real -- calculated throghput
requiredThroughput : positive real     -- required throghput to
pumps
K --safety timeout for rescue mode
va1, va2: real --minimal and maximal adjusted flow of

exiting steam
pa1, pa2: real --minimal and maximal adjusted throghput of

the pumps
qa1, qa2: real --minimal and maximal adjusted quantity of

water
axioms

vars
initModeFromState:
m(initialization) ↔ state=waiting ∨ state=adjustingWaterLevel ∨
state=programReady
modeFromState:  ¬m(initialization) →  m(state)
-- in initializing mode system state can be waiting or adjustingWaterLevel or
programReady. In the other modes state and mode are identical
transmissionErrorDetection:
transmissionError ↔ steamTE ∨ levelTE ∨ pumpsTE
calculation:

calcThroughput

N N qa qa
pumpsNumber P

N N
M

va va
=

+
−

+





 ⋅ ⋅

+
−

+
+

1 2

1 2
1

2
1 2

2

2

1 2
2

request: calcThroughput <0 → requiredThroughput=0 ∧
calcThroughput ≥0 → requiredThroughput= calcThroughput

valveManagement:
Becomes state adjustingWaterLevel qa N
state adjustingWaterLevel Becomes qa N

v
( )

( )
= ∧ > ∨

= ∧ ≤








 ↔

1
1

2

2

programReadyComunication: PR↔state=programReady



KCalculation:
Becomes levelBroken

x
M Past qa
pumpsNumber P

Past qa M
W

Until
K x
Becomes levelBroken

( )

min
( , )

,
( , ) (

,
( ))

∧

=
−

⋅
−

























→
=







2 21 11 1

criticalLevelDetection:

criticalLevel

mode(rescue) Lasted (mode(rescue),K)

mode(rescue)
Past(qa1,1) va2D U D pa1D M
Past(qa2,1) va1D U D pa2D M

ii
1
2 1

2
1

1
2 2

2
2

↔

∧ ∨

¬ ∧
− − + ≤ ∨
− + + ≥



























normalToRescue

( )
UpToNow(mode(normal))

levelBroken
 D

mode(rescue)
Until mode(rescue), levelBroken D

∧
∧

¬















→
∧

¬ ∨










-- similar rules can be derived systematically for alla other transitions.
end clManager


