
ROBY: a Tool for Robustness Analysis of
Neural Network Classifiers

Paolo Arcaini
National Institute of Informatics

Tokyo, Japan
arcaini@nii.ac.jp

Andrea Bombarda
University of Bergamo

Bergamo, Italy
andrea.bombarda@unibg.it

Silvia Bonfanti
University of Bergamo

Bergamo, Italy
silvia.bonfanti@unibg.it

Angelo Gargantini
University of Bergamo

Bergamo, Italy
angelo.gargantini@unibg.it

Abstract—Classification using Artificial Neural Networks
(ANNs) is widely applied in critical domains, such as autonomous
driving and in the medical practice; therefore, their validation is
extremely important. A common approach consists in assessing
the network robustness, i.e., its ability to correctly classify input
data that is particularly challenging for classification. We re-
cently proposed a robustness definition that considers input data
degraded by alterations that may occur in reality; the approach
was originally devised for image classification in the medical
domain. In this paper, we extend the definition of robustness to
any type of input for which some alterations can be defined.
Then, we present ROBY, a tool for ROBustness analYsis of
ANNs. The tool accepts different types of data (images, sounds,
text, etc.) stored either locally or on Google Drive. The user can
use some alterations provided by the tool, or define their own.
The robustness computation can be performed either locally or
remotely on Google Colab. The tool has been experimented for
robustness computation of image and sound classifiers, used in
the medical and automotive domains.

Index Terms—NN classifier, robustness, ML testing

I. INTRODUCTION

Artificial Neural Networks (ANNs) are increasingly used to
perform different activities [4], among which classification is
one of the most popular. ANN-based classification is used in
critical domains [13] as, e.g., during autonomous driving [7],
or in the medical practice [6]; therefore, their validation is
of paramount importance. A desired property of an ANN to
be tested, is its robustness, i.e., the ability of the network to
correctly evaluate unknown (not seen during training) inputs.
Typical approaches define the robustness using adversarial
examples, i.e., inputs that are particular challenging for the
network under test. However, it has been noted that, since
adversarial examples are often created by exploiting the in-
ternal structure of the network [17], they may not reflect
real inputs that could occur during the network usage [10],
[11], [20]. Therefore, we have recently proposed to define
the robustness by considering real alterations that may occur
to input data. In [5], we defined the typical alterations (e.g.,
blur) that could occur during image acquisition in the medical
practice of cancer detection using Convolutional Neural Net-
works (CNNs); moreover, we also provided a formal definition

P. Arcaini is supported by ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603), JST, and Engineerable AI Techniques
for Practical Applications of High-Quality Machine Learning-based Systems
Project (Grant Number JPMJMI18BB), JST-Mirai.

of robustness that assesses to what extent the network is
robust against image alterations. In a similar way, Secci and
Ceccarelli [15] defined alterations that could occur during the
image acquisition of an RGB camera (e.g., condensation), and
assessed the performance decrease of an autonomous driving
agent that takes in input such altered images.

Given the widespread use of ANNs in critical contexts,
there is an increasing need for ANN testing approaches
that are actually implemented in usable tools, so that they
can be adopted in the development practice. However, while
several techniques have been constantly proposed for ANN
testing [14], [21], their implementation is often not available:
a recent survey on ML testing [14] found that 71% of the
surveyed papers do not provide any artifact. Even when the
implementation is available, the techniques are usually only
applicable to the considered domain, and they require quite
some effort to be adopted in other contexts.

Our definition of robustness [5] was originally proposed
and implemented only for image classification, and it was
experimented only in the medical domain. However, the defi-
nition is quite general, and it is applicable to the classification
of different types of data (e.g., images, sounds, etc.), once
the alterations typical of the domain (e.g., medical domain,
autonomous driving, speech recognition for domotics, etc.) are
defined. Therefore, in this paper, we generalize our approach,
and we present ROBY, a tool for ROBustness analYsis. The
tool has been engineered so that it can be used, with minimal
effort, by different users in different domains for different
types of data. A user must only specify:

• the location of their test data set;
• how to retrieve the correct classification of the test data;
• which alterations to apply to input data; the user can use

standard ones provided by the tool, or specify their own;
• where to run the robustness computation (either locally

or on Google Colab).
As a result, the tool computes the robustness values for the

different alterations, and produces plots that visualize how the
accuracy changes when alterations are applied and, in this way,
visualizes the robustness.

The tool is available at:

https://github.com/fmselab/roby

and it can also be installed using the package manager pip:

https://github.com/fmselab/roby

Fig. 1. Examples of brightness alteration

pip install roby

Paper structure. Sect. II introduces our definition of robust-
ness. Sect. III explains the tool architecture, its requirements,
and its usage. Then, Sect. IV shows its application to different
domains, and Sect. V discussed some lessons we learned
during the tool development. Finally, Sect. VI reviews some
related work, and Sect. VII concludes the paper.

II. ROBUSTNESS DEFINITION

Artificial Neural Networks (ANNs) are used in many critical
tasks, among which classification. For example, Convolutional
Neural Networks can be used to analyze images.

In the following, we consider ANNs trained to be used as
classifiers, i.e., to assign a label (taken from a set of possible
categories) to an input (e.g., an image, a sound, a text, etc.).

Definition 1 (Classifier). A classifier C for inputs I can be
seen as a function that assigns a label l to an input p ∈ I , i.e.,
C(p) = l.

We measure the quality of an ANN classifier in terms of
accuracy. However, other quality metrics could be used.

Definition 2 (Accuracy). The accuracy of a classifier C w.r.t.
a set of inputs P ⊆ I is defined as the ratio of correctly
evaluated inputs, i.e.,

acc(C,P) =
|{p ∈ P | C(p) = correctLabel(p)}|

|P |
where correctLabel gives the correct evaluation of an input p.

If we alter the input data in P , the accuracy of the classifier
will likely decrease, and the decrement will be more evident
for bigger alterations. Examples of images obtained with the
brightness alteration are shown in Fig. 1. Fig. 2 shows how
the accuracy of a CNN for image classification, changes by
altering the brightness of the images in P .

Some alterations are more plausible than others, as they
may occur in reality during any stage of the processing of
the input data. Therefore, in [5] we proposed to compute the
robustness of a network w.r.t. these alterations. We here recall
our definitions of alteration and robustness.

Definition 3 (Alteration). An alteration of type A of an input
t is a transformation of t that mimics the possible effect on
t when a problem during its acquisition, or in its elaboration,
occurs in reality. In the following, we identify with [LA,UA]
the range of plausible alterations of type A; moreover, we

Fig. 2. Accuracy change when brightness is altered

identify with PAi the set of data obtained by altering all the
input data in P with an alteration of type A of level i ∈
[LA,UA]. We require one element u ∈ [LA,UA] to be the
unaltered value, i.e., PAu = P .

Given a set of alterations, we define the robustness as
follows.

Definition 4 (Robustness). Let Θ be a threshold representing
the minimum accepted accuracy. The robustness of a classifier
C w.r.t. alteration of type A in the range [LA,UA] (using a set
of inputs P) is defined as the percentage of alteration values
for which the accuracy is above Θ. Formally:

robA(C,P) =∫ UA
LA

H(acc(C,PAi)−Θ)di

UA−LA

where H(x) =

{
1, x ≥ 0

0, x < 0

Fig. 2 shows the robustness representation with Θ = 80%.
Directly computing robustness is not feasible, since it requires
to use an infinite number of alterations. Therefore, we approx-
imate it as follows.

Definition 5 (Approximate robustness). Given n equi-
distributed points SP = {i1, . . . , in} sampled in the interval
[LA,UA] of all the possible alterations of type A, the approx-
imate robustness is defined as:

robA(C,P) =
|{i ∈ SP | acc(C,PAi) ≥ Θ}|

|SP |
III. ROBY TOOL

ROBY (ROBustness analYzer) is a Python tool to perform
robustness analysis of neural network classifiers, as defined in
Sect. II. Given a trained model, an already labeled data set,
and the list of classification classes, ROBY applies the selected
alterations and computes the robustness based on the defined
accuracy threshold.

Regarding the alterations, users can apply predefined al-
terations or define their own. Currently, ROBY provides, as
predefined alterations, those usually applied to images: verti-
cal translation, horizontal translation, compression, Gaussian
noise, blur, brightness, and zoom. Once an alteration has
been applied, the tool computes the robustness, displays the
robustness result, and plots the accuracy over different levels
of alteration. In case the data set can be subject simultaneously

data set
+ labels model

alterations

environment
definition

pre
processing

robustness
analysis

threshold

robustness

graphs

Fig. 3. ROBY workflow

to more than one alteration (e.g., an image could be translated
and blurred), the user can apply a sequence of alterations to
test the robustness of the network and simulate the effect of a
composed alteration.

Since the data set could require pre-processing activities
(e.g., removing white space from an image) before the input
is given to the network for classification, the tool allows the
user to define functions for the pre-processing tasks.

The tool has been designed with the following main char-
acteristics set as goals. (i) Usability: for instance, we provide
some examples and a wiki; moreover, the code is documented
and uses typing annotations to guide the user in the use of
methods. (ii) Portability: the tool can be used locally on any
computer with Python or on Google Colab. (iii) Extensibil-
ity: the user can extend classes and redefine methods (see
Sect. III-C) based on the specific case study.

A. Requirements

Before using ROBY tool, the user must make sure that their
system satisfies the following requirements:

• The model represents a classifier and is written in a
format supported by Keras, i.e., HDF5 or SavedModel.

• All the inputs in the test data set must be previously
labeled and must be expressible in the np.ndarray
format (note that it is a rather general format in which
images, audio, text, and video can be represented).

• It is possible to represent each alteration as an input mod-
ification between a minimum and a maximum threshold.

B. ROBY workflow

Fig. 3 shows all the activities required by ROBY that the
user has to carry on in order to perform the robustness analysis
of a given ANN. In particular, the user has to:

1) Supply a data set, together with the labels (possibly given
as a function, labeler, applicable to each input data
and giving as output the correct label) and a model. Data
set and model can be stored either in the local hard drive
or on Google Drive.

2) Define the environment that optionally includes, besides
the input data together with their labels and the model,
also the pre-processing function.

3) Select suitable alterations among those provided by
ROBY or define new ones in accordance with the domain.

4) Specify the desired threshold for computing the robust-
ness.

5) Run ROBY which computes the robustness measure,
and produces plots showing how the accuracy of the
model changes w.r.t. different levels of alterations. The
robustness analyzer can run either on the local PC or on
Google Colab1.

C. Extension points

ROBY has been designed to be extensible as much as
possible. The user can define a method to load the data set, a
method to adapt to different data formats, and another method
to assign labels to input data. Moreover, ROBY allows the
user to define custom alterations and pre-processing functions.
These extension points are better explained in the following.

• Data loading: ROBY works for ANNs used as classifiers
receiving np.ndarray input data. Users can create a testing
environment EnvironmentRTest by giving either the paths
for all the input data or a list of data already in the array
format. In the former case (i.e., paths are given), the user
shall specify the way to be used to convert the file data into the
np.ndarray format by declaring a reader(file_name)
function receiving the path as input and giving the array
representation as output.

• Data labeling: correct labels for input data can be given
either with a list of all the labels or by using a labeler
function. In the former case, the list must be of the same
size as the data set, while in the latter case the user must
define a function receiving a data (in either np.npdarray
format or in string representing the file path) and returning a
string representing the real label. Typical labeler functions
will use the image name or folder name to extract the correct
classification.

• Custom alterations: ROBY introduces the abstract class
Alteration that can be extended to create custom alter-
ations, expressible as input modifications within a minimum
and a maximum threshold. When extending the abstract class,
the user must implement the functions name(), to return the
name of the alteration, and apply_alteration(data,
alteration_level), which, given the data in a
np.ndarray object, returns the data (still in np.ndarray)
with the alteration applied with a desired alteration level.
Moreover, ROBY provides a class AlterationSequence,
that can be used to represent an alteration caused by the
composition of more alterations.

• Pre-processing: ANNs could have been trained with data
of different shapes, sizes, or formats than the ones used for
testing. For these reasons, during the declaration of the testing
environment EnvironmentRTest, users can specify a pre-
processing function. This function is applied to each input
data, possibly after an alteration is applied, before its recog-
nition by the ANN. Typical pre-processing functions
remove white border from images, resize or extract relevant
part from the input, or clip the volume of an audio track.

1https://colab.research.google.com

https://colab.research.google.com

TABLE I
SUMMARY OF THE CHARACTERISTICS OF THE EXAMPLE CASE STUDIES

Case Study Model
format

Labeling
method

Pre-processing
function Local Cloud Alterations Input

data

Breast cancer .model labeler function X X Google Colab + Drive standard histological exam images [8]
MNIST .h5 labels list X X standard MNIST data set [3]
GTSRB .h5 labels list X X camera failures [15] GTSRB data set [16]

MNIST Audio .h5 labels list X X audio Gaussian noise MNIST audio data set [1]

IV. DEMONSTRATION

To further evaluate the efficacy and to demonstrate the
functionalities of ROBY, we have tested it on several case
studies, which differ in terms of model format, the way in
which the user gives the correct labels, input type and size,
and type of alterations. The summary of these case studies is
reported in Table I. For all the case studies, we have tested
the models using a limited number of input data in the test
set, since we are only interested in showing the functionalities
of the tool —and this can be done with a limited number of
input data too— and not in computing the precise robustness
of the models.

A. Breast cancer diagnosis

Breast cancer diagnoses, in particular for Invasive Ductal
Carcinoma (IDC), are based on the analysis of images of
histological features of tissue or cells removed with surgery
or biopsy. These images are captured by a microscope and ex-
amined by pathologists to make a decision about the benignity
or the malignity of the suspected cancer. The images we used
for robustness analysis are those from a publicly available data
set curated by [8], while the model is the same we presented
in [5]. A particular aspect of the data set we used is that the
real label of the images is contained in the name of the files.
Thus, we have defined a labeler function, extracting the
class (0-negative or 1-positive) from the file names.

For this case study2, we have implemented two solutions:
• A local analysis (breast_cancer_local.py) in

which the model and the data set are available locally,
and the robustness evaluation is run on the user’s PC.

• A cloud solution (breast_cancer_colab.ipynb),
in which the data set, the model, and categories definition
are loaded from Google Drive, and the robustness analysis
is performed on Google Colab. To make this possible,
we have exploited the functionalities offered by the
CloudTools module included in ROBY.

Using ROBY, we have obtained the results in Table II, when
threshold Θ = 0.8 is used. The last row in Table II shows
the robustness of the model when a sequence of alterations
is used. In this case, for each image, a defined level of zoom
and brightness alterations is applied. This can be useful to
represent alterations made up of the composition of other sub-
alterations.

2https://github.com/fmselab/roby/tree/main/code/roby Use/breast-cancer

TABLE II
ROBUSTNESS RESULTS FOR THE BREAST CANCER DIAGNOSIS CASE STUDY

Alteration # intervals [UA, LA] Robustness [%]

Gaussian noise 20 [0, 1] 100.00
Compression 20 [0, 1] 4.76
Vertical translation 20 [−1, 1] 100.00
Horizontal translation 20 [−1, 1] 100.00
Blur 20 [0, 1] 38.10
Brightness 20 [−0.5, 0.5] 19.05
Zoom 20 [0, 1] 71.43
Seq (Zoom, Brightness) 20 [0, 1], [−0.5, 0.5] 19.05

TABLE III
ROBUSTNESS RESULTS FOR THE HAND-WRITTEN DIGITS CLASSIFICATION

CASE STUDY

Alteration # intervals [UA, LA] Robustness [%]

Gaussian noise 20 [0, 1] 100.00
Compression 20 [0, 1] 4.76
Vertical translation 20 [−1, 1] 100.00
Horizontal translation 20 [−1, 1] 100.00
Blur 20 [0, 1] 4.76
Brightness 20 [0, 1] 4.76
Zoom 20 [0, 1] 76.19

B. Hand-written digits classification

MNIST (Modified National Institute of Standards and Tech-
nology database) is a well-known data set containing a lot of
images of hand-written number digits [3]. It is also shipped
with Keras, in which the images are already in the required
np.ndarray format and are accompanied by a list contain-
ing each image label.

To test ROBY on this case study, we have analyzed the same
standard alterations used for the breast cancer recognition
model, by testing a publicly available model [2] only on the
first 200 images of the data set3 and we have obtained the
results in Table III using Θ = 0.8.

C. Traffic signs recognition

GTSRB (German Traffic Sign Recognition Benchmark) is
the data set coming from a multi-class, single-image classi-
fication challenge [16] including more than 50, 000 images,
classified in more than 40 classes, of German traffic signs. The
recognition of traffic signs is challenging, since it is performed
by cameras under different environmental conditions, and the
robustness of systems recognizing them must be proved, since

3https://github.com/fmselab/roby/tree/main/code/roby Use/mnist

https://github.com/fmselab/roby/tree/main/code/roby_Use/breast-cancer
https://github.com/fmselab/roby/tree/main/code/roby_Use/mnist

TABLE IV
ROBUSTNESS RESULTS FOR THE TRAFFIC SIGNS RECOGNITION CASE

STUDY

Alteration # intervals [UA, LA] Robustness [%]

Ice 20 [0, 1] 4.76
Condensation 20 [0, 1] 4.76

Fig. 4. Digit recognition from sound case study – Accuracy over Gaussian
audio noise alteration

they are usually performed by self-driving cars or, in general,
by safety-critical systems.

To simulate the effects of weather on the recognition of the
traffic signs, we have defined custom alterations exploiting the
ones proposed by [15], and we have assessed the robustness of
the model w.r.t. condensation and rain4, obtaining the results
in Table IV, when Θ = 0.8 is used. As we can see from
these results, ROBY allows us to prove that, even though
the model we have used was very accurate (acc = 97.5%),
a small alteration degrades significantly the accuracy of the
classification.

D. Digit recognition from sound

The previous examples are all based on image classifiers.
However, ROBY supports all kinds of classifiers, for which
input data can be given in np.ndarray format. To demon-
strate the applicability of our tool to other input data types, we
have tested a model for digit recognition from sound: different
people pronounce digits and the model aims to recognize them.
It is publicly available in [1], along with the data set that
contains the real label of each sound in the name of the file.

For this case study, we have defined a customized alteration,
namely a Gaussian noise for audio signals, and we have
analyzed the robustness of the ANN, obtaining the result in
Fig. 4, corresponding to a robustness rob = 14.28% when a
threshold Θ = 0.8 is chosen.5

V. LESSON LEARNED

Using ROBY, we have been able to compute the robustness
and identify the weaknesses of the analyzed models. This is
a very important feature, since looking only at the accuracy
of the model can be not enough for assessing the quality of a

4https://github.com/fmselab/roby/tree/main/code/roby Use/
trafficsigns-imagefailures

5https://github.com/fmselab/roby/tree/main/code/roby Use/speech
recognition

given ANN. For instance, the model presented in Sect. IV-C
has a really high accuracy, but a very low robustness.

ROBY has been designed in an incremental way. At the
beginning, we tried to implement a tool executing the same
operations we have presented in [5], so that it was applicable
to image classifiers. During the development, we have realized
that our definition of robustness was general enough to extend
the tool to all the domains in which a classifier is used,
independently on the type of input data. This has required the
introduction of abstract classes and methods, to allow users
to define their own alterations, based on the input data type.
Having chosen Python as programming language, we noticed
that it was hard to check the correctness of programs that use
or extend ROBY, since static code analyzer (e.g., myPy or
Pylint) could not recognize type errors. Thus, we have decided
to include type annotations to aid the final user in choosing
the right variable types.

Moreover, it is widely known that machine learning applica-
tions are highly demanding in terms of time and computational
resources, since they include a lot of data to be processed
and perform complex operations. For this reason, during the
development process of ROBY, we have tried to re-engineer
the code in order to improve the performance. To deal with
the time-consumption of machine learning applications, we
have included in ROBY modules to allow a cloud execution
on Google Colab. At the beginning we thought that Google
Colab would have been faster than a standard desktop. At the
end of the day, we have discovered that the free version of
Google Colab has more or less the same performances than
a regular desktop. Nevertheless, the advantage of using the
cloud is that a user has immediately a working environment
that can be scaled up easily.

We have decided to implement ROBY as a library and not
as an interface (either GUI or CLI), since a rigid interface
would have limited the extensibility which ROBY has been
designed for. Thus, we assume that the final user has a good
expertise in developing machine learning applications, or can
modify the provided examples to adapt ROBY for their own
application. However, in the future we may add an interface
in order to make ROBY usable to non-experienced users.

VI. RELATED WORK

Testing machine learning models is, recently, a hot topic
which has been defined over several properties, e.g., correct-
ness, robustness, and fairness [21]. However, it is difficult to
test machine learning applications using software testing tech-
niques originally designed for code [14]. Robustness, intended
as the ability of the model to give the correct output even when
a small perturbation of the input occurs, is often evaluated in
machine learning testing. To address the complexity of testing,
several solutions have been proposed, but many of them are
domain-specific and cannot be generalized to all kinds of neu-
ral networks or input types. An example is the one presented
in [15], where the authors test the behavior of a model in
autonomous driving applications when RGB camera failures
occur. Testing models used in autonomous driving vehicles is

https://github.com/fmselab/roby/tree/main/code/roby_Use/trafficsigns-imagefailures
https://github.com/fmselab/roby/tree/main/code/roby_Use/trafficsigns-imagefailures
https://github.com/fmselab/roby/tree/main/code/roby_Use/speech_recognition
https://github.com/fmselab/roby/tree/main/code/roby_Use/speech_recognition

also performed by DeepTest [18], a systematic testing tool for
automatically detecting erroneous behaviors of DNN-driven
vehicles that can potentially lead to fatal crashes, and by
DeepRoad [22], a framework to perform metamorphic testing
and input validation. Some solutions, such as PRODeep [9],
aim at evaluating the robustness of a model using several
approaches, such as constraint-based, abstraction-based, and
optimization-based robustness checking algorithms. However,
PRODeep is a standalone software and not a library, and,
therefore, it cannot be extended with customized alterations
or integrated in other software to perform combined analysis.
Other solutions are focused on robustness w.r.t. adversarial ex-
amples. For example, [12] proposes a Python library support-
ing developers and researchers in defending Machine Learning
models against adversarial threats. Another example of tool
focusing on adversarial robustness is EvalDNN [19] which
aims to evaluate deep learning systems in general, supporting,
besides adversarial robustness, also neuron coverage and top-k
accuracy. This is a different concept of robustness, compared
to the one we propose with ROBY, which is more general
and focused on plausible alterations. However, ROBY can
be used to evaluate also adversarial robustness. In ROBY,
the user could define a customized alteration which generates
adversarial examples in a defined range, and test the robustness
of the model w.r.t. them.

VII. FUTURE WORK AND CONCLUSION

In this paper, we have presented ROBY, a tool for robust-
ness analysis of neural network classifiers. In our preliminary
experiments, we have tested ROBY on several case studies,
demonstrating that it is applicable to different input data
formats, data locations, alterations, and in different execution
environments (either locally or on the cloud). However, the
tool can be further extended. As future work, we plan to
enhance the functionalities of ROBY by adding functions to
generate augmented data sets starting from the user-defined
alterations. Indeed, as we have already demonstrated in [5],
using such augmented data during the training phase can
significantly increase the robustness (and often the accuracy)
of a neural network. Furthermore, we are extending ROBY to
analyze the robustness of other neural networks in addition to
those used for classification, for example for data prediction,
and with other models beside the Keras format. In terms
of performance, we are investigating techniques suitable for
reducing the required time, such as prioritization or approxi-
mation methods.

ACKNOWLEDGMENT

We would like to thank Danilo Bertocchi for the preliminary
work done for his master thesis.

REFERENCES

[1] Digit Recognition from Sound. https://github.com/adhishthite/
sound-mnist.

[2] Handwritten digit recognition with MNIST and Keras. https://github.
com/Curt-Park/handwritten digit recognition.

[3] The MNIST database of handwritten digits. http://yann.lecun.com/exdb/
mnist/.

[4] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,
and H. Arshad. State-of-the-art in artificial neural network applications:
A survey. Heliyon, 4(11):e00938, 2018.

[5] P. Arcaini, A. Bombarda, S. Bonfanti, and A. Gargantini. Dealing with
robustness of convolutional neural networks for image classification. In
2020 IEEE International Conference On Artificial Intelligence Testing
(AITest), pages 7–14, 2020.

[6] Q. Fu, F. Yang, J. Zhao, X. Yang, T. Xiang, G. Huai, J. Zhang, L. Wei,
S. Deng, and H. Yang. Bioinformatical identification of key pathways
and genes in human hepatocellular carcinoma after CSN5 depletion.
Cellular Signalling, 49:79–86, sep 2018.

[7] H. Fujiyoshi, T. Hirakawa, and T. Yamashita. Deep learning-based image
recognition for autonomous driving. IATSS Research, 43(4):244–252,
dec 2019.

[8] A. Janowczyk and A. Madabhushi. Deep learning for digital pathology
image analysis: A comprehensive tutorial with selected use cases.
Journal of Pathology Informatics, 7(1):29, July 2016.

[9] R. Li, J. Li, C.-C. Huang, P. Yang, X. Huang, L. Zhang, B. Xue,
and H. Hermanns. PRODeep: A platform for robustness verification
of deep neural networks. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2020, pages
1630–1634, New York, NY, USA, 2020. Association for Computing
Machinery.

[10] R. Mangal, A. V. Nori, and A. Orso. Robustness of neural networks:
A probabilistic and practical approach. In Proceedings of the 41st
International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE-NIER ’19, pages 93–96, Piscataway, NJ, USA,
2019. IEEE Press.

[11] D. Marijan, A. Gotlieb, and M. K. Ahuja. Challenges of testing machine
learning based systems. In 2019 IEEE International Conference On
Artificial Intelligence Testing (AITest), pages 101–102, April 2019.

[12] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba,
V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig, I. Molloy, and
B. Edwards. Adversarial robustness toolbox. CoRR, 1807.01069, 2018.

[13] W. Rawat and Z. Wang. Deep convolutional neural networks for
image classification: A comprehensive review. Neural Computation,
29(9):2352–2449, sep 2017.

[14] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and
P. Tonella. Testing machine learning based systems: a systematic
mapping. Empir. Softw. Eng., 25(6):5193–5254, 2020.

[15] F. Secci and A. Ceccarelli. On failures of RGB cameras and their effects
in autonomous driving applications. In 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), pages 13–24,
2020.

[16] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition.
Neural Networks, 32:323–332, aug 2012.

[17] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus. Intriguing properties of neural networks. In
2nd International Conference on Learning Representations, ICLR 2014,
Conference Track Proceedings, 2014.

[18] Y. Tian, K. Pei, S. Jana, and B. Ray. DeepTest: Automated testing of
deep-neural-network-driven autonomous cars. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), ICSE ’18,
pages 303–314, New York, NY, USA, May 2018. ACM.

[19] Y. Tian, Z. Zeng, M. Wen, Y. Liu, T. yang Kuo, and S.-C. Cheung.
EvalDNN: A toolbox for evaluating deep neural network models.
In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings. ACM, jun 2020.

[20] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See. DeepHunter: A coverage-guided fuzz testing
framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, pages 146–157, New York, NY, USA, 2019. ACM.

[21] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning
testing: Survey, landscapes and horizons. IEEE Transactions on Software
Engineering, pages 1–1, 2020.

[22] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. DeepRoad:
GAN-based metamorphic testing and input validation framework for
autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, pages 132–142, New York, NY, USA, 2018. Association for
Computing Machinery.

https://github.com/adhishthite/sound-mnist
https://github.com/adhishthite/sound-mnist
https://github.com/Curt-Park/handwritten_digit_recognition
https://github.com/Curt-Park/handwritten_digit_recognition
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

