
An Automata-Based Generation Method for
Combinatorial Sequence Testing of

Finite State Machines
Andrea Bombarda

Department of Engineering
University of Bergamo

Bergamo, Italy
andrea.bombarda@unibg.it

Angelo Gargantini
Department of Engineering

University of Bergamo
Bergamo, Italy

angelo.gargantini@unibg.it

Abstract—Combinatorial Interaction Testing has been applied
to event-driven software systems by using as test suite a set of
sequences of inputs in desired combinations. This is generally
called combinatorial sequence testing (CST). CST requires possi-
bly new system models from which tests are generated and new
test generation methods (or an adaptation of the classical ones).
Finite State Machines (FSMs) can easily represent event-based
systems where certain inputs are valid only in some states and
such constraints can be represented by the incompleteness of the
FSM. In this paper, we propose an approach to CST where tests
are generated from FSMs which are represented by automata
together with test requirements. First, automata can be used to
check if test sequences contain invalid inputs. We propose three
methods to repair tests with invalid inputs. Moreover, we can
directly embed into automata the system constraints over the
inputs during generations, to generate only valid test sequences.
We compare our automata-based method with the standard
approach of Sequences Covering Arrays (SCAs) that produces
a set of sequences, all with the same length, composed by the
permutation of all the events supported by the system. We found
that generating only valid tests from automata provides several
advantages w.r.t. repairing tests and SCAs.

Index Terms—Test Sequence Generation; Sequencing Con-
straint; T-way Sequence Coverage; Sequence Testing; Event-
based Testing; Combinatorial Testing; Constrained Combinato-
rial Testing

I. INTRODUCTION

Combinatorial interaction testing (CIT) has been an active
area of research for many years, since it has proven to be
very effective to test complex systems with multiple input
parameters. In [23] the authors count several research groups
that actively work on CIT area and many other recent groups
and tools are not considered in that paper, while in [16] a lot of
algorithms and tools available for CIT are analyzed. Recently,
the CIT approach has proven to be effective not only to test
a system by varying the values of its input parameters, but
also to test combinations of events in event-driven software.
In this case, the extension of CIT to sequences of events
is also referred in the literature as combinatorial sequence
testing (CST) [10], [13], [18], [27]. CST can be successfully
applied to test event-driven software or systems ([3]–[5],
[15], [21], [28], [35]). A common technique for CST consists

in exploiting sequence covering arrays (SCA) for testing.
Given a set of events E, a SCA of strength t is a set of
permutations of all the events in E such that each sequence
of t distinct elements of E is a subsequence of at least one of
the permutations.

Among system inputs there are typically several constraints,
and the failure revealing ability of CIT methods might be
significantly reduced if the system has to comply with con-
straints and the test suite generator does not take them into
account. For this reason, several approaches are extended to
Constrained Combinatorial Testing [17], but all of them are
focused on input testing. For event-driven software there are
constraints over the events that can be used as inputs during
testing and, also in this case, considering the constraints over
the events during generation can increase the efficiency of
testing. For instance, a SUT may require that a given event
read must appear after another event open and if a test does
not meet this constraint, the test is invalid, and it cannot be
applied.

In this paper, we present a method that can be used to
generate test sequences for the events of incomplete Finite
State Machines (FSMs), by taking into account also their
constraints. Our method exploits the representation of FSMs
using the automata notation. We have decided to focus on
incomplete FSMs because they represent the situation in which
the constraints of events are stricter, since a particular event
may not be defined in some state. Moreover, we supported
FSMs in the form of Mealy machines (Fig. 1), that are a rather
general implementation of FSMs. We introduced also three
different approaches to repair invalid test sequences, generated
without taking into account the constraints imposed by the
FSM of the system.

We have discovered that using our method to generate
sequences, complying the constraints imposed by the FSM of
the system, can lead to a greater number of valid sequences
and to a better coverage of both of states, event tuples and
transitions.

The paper is structured as follows. In Sect. II we provide
some necessary background about the combinatorial testing,

s0start s1 s2

a/0

b/1

c/0

Fig. 1. Example of Mealy machine. a/0 means that when the input is a,
the FSM produces the output 0 and it moves to the target state shown by the
arrow.

the FSMs and the constraints that we have to satisfy in
our System Under Test (SUT). Our automata-based sequence
generation method is explained in Sect. III and its application
is evaluated in Sect. IV. Sect. V reviews some works related to
application of combinatorial sequence testing and constrained
combinatorial testing, and Sect. VI concludes the paper.

II. BACKGROUND

In this paper we generate sequences of events to test event-
driven software [30]. This kind of software can be well
described by using Finite State Machines and, in particular,
Mealy machines since they allow to manage not only the states
and the input events, but also output events.

Definition 1 (Mealy machine). A Mealy machine F is a 6-
tuple (S, s0,Σ,Λ, T,G) in which:

• S is a finite set of states.
• s0 ∈ S is the initial state of the machine F .
• Σ is a finite set that represents the input alphabet.
• Λ is a finite set that represents the output alphabet.
• T : S×Σ→ S is the transition function that maps pairs

of a state and an input symbol to the corresponding next
state.

• G : S×Σ→ Λ is the output function that maps pairs of
a state and an input symbol to the corresponding output
symbol.

Since we aim to deal with real systems, we have to define
our combinatorial sequence generation method for incomplete
FSMs.

Definition 2 (Complete and incomplete FSM). Given a FSM
F (S, s0,Σ,Λ, T,G) we say that F is a complete machine iff
for all s ∈ S and for all e ∈ Σ the transition function T (s, e)
and the output function G(s, e) are defined. Contrariwise, we
say that F is a incomplete machine iff there exist a state s ∈ S
and an event e ∈ Σ for which the transition function T (s, e)
is not defined (neither is G(s, e)).

Example 1. The FSM in Fig. 1 is an incomplete machine,
because T is not defined for the input symbols b and c in the
state s0, for the input symbol a in the state s1, and for the
symbols a, b, and c in the state s2.

In the following pages we will refer to input symbols as
events to use the same nomenclature as the one used in event-
driven software.

A. Combinatorial sequence testing of FSMs

While in classical combinatorial testing we are interested
in covering the interaction among a fixed set of inputs [19],
each with a given set of possible values, in combinatorial
sequence testing (CST) [18] of FSMs we focus on covering
the interaction of inputs taken from a unique set (the input
alphabet) but provided to the machine in different orders. This
requires the redefinition of test as a sequence of inputs of
variable length (in other approaches also for CST tests are
still organized in Sequence Covering Arrays and they have all
the same length). In our approach, a test is a finite sequence
of events (e1, e2, . . . , en) all belonging to Σ.

Definition 3 (Combinatorial sequence coverage). We say
that a test suite achieves the t-way combinatorial sequence
coverage iff for any tuple of t inputs there exists a test sequence
in which these t inputs occur in any possible order (allowing
interleaving extra inputs among the elements of the tuple).

With the standard pairwise CIT, a test suite covers for
each pair of input parameters all the possible combinations
of values. Pairwise CIT can be extended to t-wise CIT when
tuples of length t are considered instead of simple pairs. In
our case, we want to generate sequences of events covering
each tuple of t events.

Most of the event-driven software can be represented using
an incomplete FSM, since in some states, some events cannot
be fired. This representation implicitly defines some con-
straints on the FSM, meaning that only some test sequences
are valid, while others are not.

Definition 4 (Valid test sequence). Given a
FSM F (S, S0,Σ,Λ, T,G) as per Definition 1, let
ts = (e1, e2, . . . , en) be a test sequence composed of a
sequence of n events. Assume that tsi is the list of the events
in ts starting from e1 to ei and s(tsi) is the state reached
starting from the initial state s0 by applying all the events in
tsi. We call ts a valid test sequence iff, for all ei ∈ ts, ei can
be fired starting from the state s(tsi−1), i.e., T (s(tsi−1), ei)
and G(s(tsi−1), ei) are both defined.

Example 2. Let’s suppose to be in the initial state s0 of the
example in Fig. 1 in which only the event a can be fired. A test
sequence (b, b, a) is a invalid test sequence, because the event
b is not defined in the initial state. Contrariwise, for the same
example, the test sequence (a, b, a) is a valid test sequence.

For this reason, for an incomplete FSM, we may be unable
to cover all the tuples of events because some of them can be
covered only by sequences that are invalid.

Example 3. In the example of Fig. 1, the pair of c followed
(also non immediately) by a cannot be covered by any valid
test sequence.

III. COMBINATORIAL SEQUENCES GENERATION

Having introduced what we mean with combinatorial se-
quence testing and coverage, we can now introduce our

2

sequence generation method. One could extend classical com-
binatorial testing algorithms in order to generate SCAs, and
this has been done for example in [18]. However, in our
approach we are not bound to have all the tests of the same
length (usually the number of the events), so classical methods
that build covering arrays may be not well suited, and we
decided to devise an automata-based approach.

First, we introduce an automaton representing a t-wise
permutation of t events.

Definition 5 (T -wise automaton). Given a permutation p of t
events (e1, e2, . . . , et) the automaton built as in Fig. 2 is called
t-wise automaton. We call automaton(p) the function that
builds the t-wise automaton that represents the tuple p.

start

∗
e1

∗
e2

∗
et

∗

Fig. 2. Example of automaton for the recognition of the sequence
(e1, e2, . . . , et)

A t-wise automaton A can be used to check if a sequence
s covers the tuple it represents: if s is accepted by A, than
the tuple is covered.

If there are n events, there exist n!
(n−t)! permutations and

hence t-wise automata.
Exploiting the operations among automata we can build a

test suite for CST as shown in Alg. 1.
The algorithm is a typical one-test-at-the-time test generator.

At the beginning it builds an empty automaton A and then it
tries to add many t-wise automata to it in a random order.
We say that it collects multiple t-wise automata in a unique
automaton. At the end any string that can be derived form
A is a test that covers all the permutations from which the
t-wise automata are built. In particular we use the function
string(A) that returns the shortest string accepted by the
automaton A. We allow the user to set a limit N of automata to
be collected together: in this way the user can favor few long
sequences (high N) or many short sequences (low N). The
effects of the variation of the parameter N will be analysed
in Sect. IV.

This approach is similar to the one presented in [6] where a
logical context and an SMT solver is used to collect tuples in
order to generate tests for classical constrained combinatorial
interaction testing.

This standard algorithm, however, could generate invalid
test sequences. So, we have devised three different approaches
to repair invalid tests:

• Reject not valid (REJ): if a sequence contains an event
that is invalid at the time in which it is applied, the whole
sequence is rejected.

• Stop at error (STP): if a sequence contains an event that
is invalid at the time in which it is applied, the sequence
is executed only until the error is reached. The following
events are not tested.

Algorithm 1 Algorithm for test generation
Require: I the set of events
Require: t the strength of the tests
Require: N the max number of tuples for each test sequence
Ensure: TS the test suite for CST
T ← t-permutations of I
TS ← ∅
i← 0
A← empty automaton
while T 6= ∅ do

p← a random element in T
a← automaton(p)
if a ∩A 6= ∅ then

A← a ∩A
T ← T − {p}
i← i+ 1
if i ≥ N then

ADDTEST(TS,A)
i← 0

end if
end if

end while
ADDTEST(TS,A)

procedure ADDTEST(TS,A)
TS ← TS + string(A)
A← empty automaton

end procedure

• Skip error (SKP): if a sequence contains an event that
is invalid at the time in which it is applied, the single
event is skipped, and the following events are executed.

A. Generation of only valid tests

In order to avoid the generation of invalid tests, we modify
the algorithm as presented in Alg. 2. In this new version of
the generation algorithm, called CNST, we collect the t-wise
automata not starting from an empty automaton but from the
automaton that accepts only valid sequences of inputs for the
FSM under test (lines 4 and 24). Moreover, the FSM may
never accept a given permutation of t events, and in this case
this tuple is said infeasible.

Example 4. For the Mealy machine in Fig. 1, the tuple a−c−b
is infeasible, because the input symbol b cannot be accepted
after the first two symbols.

Since there is no valid test that covers infeasible tuples, it is
important to detect and discard them form the requirements.
This is done in the algorithm at line 16 where it checks if a
tuple p that cannot be collected with the current automaton,
can instead be collected with the automaton containing only
the constraints of the FSM (automaton(F)). If p cannot be
collected even with the automaton(F), then it means that the
tuple is infeasible.

3

Algorithm 2 Algorithm for test generation
Require: I the set of events
Require: F the finite state machine
Require: t the strength of the tests
Require: N the max number of tuples for each test sequence
Ensure: TS the test suite for CST

1: T ← t-permutations of I
2: TS ← ∅
3: i← 0
4: A← automaton(F) . init A with the FSM automaton
5: while T 6= ∅ do
6: p← a random element in T
7: a← automaton(p)
8: if a ∩A 6= ∅ then
9: A← a ∩A

10: T ← T − {p}
11: i← i+ 1
12: if i ≥ N then
13: ADDTEST(TS,A)
14: i← 0
15: end if
16: else if automaton(F)∩ a = ∅ then . p is infeasible
17: T ← T − {p}
18: end if
19: end while
20: ADDTEST(TS,A)
21:
22: procedure ADDTEST(TS,A)
23: TS ← TS + string(A)
24: A← automaton(F) . init A with the FSM

automaton
25: end procedure

Example 5. Fig. 3 shows the collecting operation between an
automaton representing the SUT and the pair 1 − 0. As the
figure shows, the resulting automaton can contain much more
states and transitions than the original one.

B. Monitoring

To further optimize the generation, we can perform moni-
toring which consists in checking if a test generated for a set
of tuples accidentally covers other tuples as well. Algorithm
3 implements monitoring works: once a test is generated,
all the tuples that are still not covered are checked against
the test. If a tuple is covered, then its is discarded. To
check if a tuple is covered by a test, we can check if the
automaton representing that tuple accepts the test sequence.
Note that while the collecting of Alg. 2 can be expensive,
since it requires the operation of intersection among automata,
monitoring is generally much faster since acceptance is easily
computed.

IV. METHOD EVALUATION

We use the dk.brics.automaton [22] Java pack-
age to build automata representing the FSM of the whole

Algorithm 3 Monitoring
1: procedure ADDTEST(TS,A,T)
2: test ← string(A)
3: for all t ∈ T do
4: if isAccepted(test, automaton(t)) then
5: T ← T − {t}
6: end if
7: end for
8: TS ← TS + test
9: A← automaton(F)

10: end procedure

system and each tuple of events. The code we have
used to execute the method evaluation can be found in
the following public repository: https://github.com/fmselab/
FiniteStateMachineCombinatorial.

To evaluate our automata-based generation method for se-
quence combinatorial testing of Finite State Machines, we
have tested and analysed the coverage of the pair-wise test
sequences over four different systems described using FSMs
(see Table I): the IEEE 11073 PHD’s communication model
(already analysed and tested with different approaches in [4]
and [33]), a pattern matching system (for the recognition of the
regular expression 01[0∗]1), a simple elevator and a vault that
can be unlocked only by the combination ”12345”. As shown
in Table I, we use different values of N among the models
since the PHD communication model is more complex than
the others, and the intersection operation times out with N
greater than 10 for it.

We have represented all the benchmark systems using the
SMC (State Machine Compiler) standard language [26] that
allows to express the behavior and generate the classes in
a lot of different languages, by using the included compiler.
Listing 1 shows an example of the SMC description of the
vault benchmark, where char1. . . char5 are the events fired by
the FSM when a number is pressed.

The results of the evaluation of our methods, by executing
the test generation process 10 times for every combination of
options, are reported in Table II.

In particular, we are interested in answering the following
research questions:

RQ1 How does the sequence generation time correlate
with the size of the system, depending on the
method?

RQ2 How the CNST method impacts the number of valid
sequences and coverage w.r.t. the other methods
(REJ, SKP, and STP)?

RQ3 How does the monitoring optimization influence the
coverage of the sequences?

RQ4 How does the number of pairs covered by the se-
quences correlates with the value chosen for the
parameter N?

RQ5 How does the sequence generation time correlate
with the value chosen for the parameter N?

4

https://github.com/fmselab/FiniteStateMachineCombinatorial
https://github.com/fmselab/FiniteStateMachineCombinatorial

start
0

0

1

1

0

0

10
1

(a) Automaton of the system

start

∗
1

∗

0

∗
(b) Automaton of the pair 1− 0

start
0

0

1
1

0

0

1

0

00

1

0

1

0

1

(c) Intersection among the two previous automatons

Fig. 3. Intersection process among automata for the pattern recognition system

Listing 1. Example of SMC description of the vault benchmark

%class Vault
%package examples

%start MainMap::Idle
%map MainMap

%%
Idle
{

char1 First number { no response (); }
}
First number
{

char2 Second number { no response (); }
}
Second number
{

char3 Third number { no response(); }
}
Third number
{

char4 Fourth number { no response (); }
}
Fourth number
{

char5 unlocked { no response (); }
}
%%

TABLE I
BENCHMARKS

PHD
Communication

Model

Pattern
Recognition

Elevator Vault

Automata per test
sequence (N)

10 20 20 20

Transitions 65 9 6 5

States 5 5 4 6

Events 23 2 8 5

Event pairs 529 4 64 25

Valid event pairs 484 4 25 10

Event triples 12,167 8 512 125

Valid event triples 10,648 8 125 10

RQ6 How does the total length of sequences correlate with

TABLE II
METHOD EVALUATION (PAIRWISE TESTING)

B
en

ch
m

ar
k

M
on

ito
ri

ng

M
et

ho
d

#
Se

q.

M
ax

.L
en

.

M
in

.L
en

.

Av
g.

L
en

.

To
t.

L
en

.

#
Va

lid
Se

q.

#
C

ov
.p

ai
rs

#
C

ov
.s

ta
te

s

#
C

ov
.t

ra
ns

.

G
en

.t
[s

]

PHD NO CNST 41 20 11 17 708 41 484 5 51 428.40
PHD NO SKP 45 20 2 15 693 0 270 5 39 135.60
PHD NO REJ 45 19 2 15 701 0 0 0 0 144.24
PHD NO STP 45 20 2 15 692 0 49 2 12 150.80

PHD YES CNST 41 21 15 17 723 41 484 5 51 474.92
PHD YES SKP 45 20 2 15 686 0 271 5 39 185.08
PHD YES REJ 45 18 2 15 695 1 1 1 2 131.00
PHD YES STP 45 18 2 15 701 0 55 3 16 168.05

Pattern rec. NO CNST 1 4 4 4 4 1 4 5 4 0.07
Pattern rec. NO SKP 1 4 4 4 4 1 4 5 4 0.06
Pattern rec. NO REJ 1 4 4 4 4 1 4 5 4 0.06
Pattern rec. NO STP 1 4 4 4 4 1 4 4 3 0.07

Pattern rec. YES CNST 1 4 4 4 4 1 4 5 4 0.07
Pattern rec. YES SKP 1 4 4 4 4 1 4 5 4 0.06
Pattern rec. YES REJ 1 4 4 4 4 1 4 5 4 0.07
Pattern rec. YES STP 1 4 4 4 4 1 4 4 3 0.07

Elevator NO CNST 1 12 12 12 12 1 25 4 6 0.55
Elevator NO SKP 3 13 11 12 36 0 14 4 6 74.33
Elevator NO REJ 3 13 12 12 37 0 0 0 0 65.50
Elevator NO STP 3 13 11 12 36 0 0 2 1 79.08

Elevator YES CNST 1 12 12 12 12 1 25 4 6 0.58
Elevator YES SKP 3 14 11 12 36 0 8 4 5 62.25
Elevator YES REJ 3 13 11 12 37 0 0 0 0 99.37
Elevator YES STP 3 12 10 11 34 0 3 4 4 87.16

Vault NO CNST 1 5 5 5 5 1 10 6 5 0.21
Vault NO SKP 2 10 5 7 15 1 10 6 5 2.43
Vault NO REJ 2 10 4 7 14 0 0 0 0 2.10
Vault NO STP 2 10 5 7 15 0 6 5 4 1.87

Vault YES CNST 1 5 5 5 5 1 10 6 5 0.21
Vault YES SKP 2 9 5 7 14 0 10 6 5 1.40
Vault YES REJ 2 9 5 7 14 0 0 0 0 1.80
Vault YES STP 2 10 4 7 14 0 10 6 5 1.50

the value chosen for the parameter N?
RQ7 Is our method better than the standard sequence

generation method based on SCAs?

A. RQ1: Sequence generation time and system size

By observing the generation time1 of the sequences in Table
II, we can see that for small systems (such as the elevator) the

1Experiments have been run on a computer with 14GB of RAM and a
Intel® Core™ i5-750 CPU

5

TABLE III
EVALUATION OF THE RESULTS OBTAINED WITH DIFFERENT GENERATION

METHODS

% Valid Seq. % Pairs Cov. % States Cov. % Transitions Cov.

CNST 100.00 100.00 100.00 77.65

SKP 3.92 55.50 100.00 62.94

REJ 2.94 0.86 27.50 5.88

STP 1.96 12.52 75.00 28.24

TABLE IV
COVERAGE WITH AND WITHOUT MONITORING DEPENDING ON THE

GENERATION METHODS

CNST SKP REJ STP

No monitoring 92.55% 73.50% 10.16% 33.27%

Monitoring 92.55% 72.79% 12.67% 43.90%

time required by CNST is much smaller than the time required
by the others. The reason is that repairing the sequences
significantly takes more time than the sole generation time.
Contrariwise, for systems that have many events, CNST is the
slowest since the generation of the sequences by complying the
constraints of the FSM requires more time than the repairing
of the sequences. In this case, building the intersection among
automata is time consuming, since they must contain the
system constraints from the beginning. However, CNST leads
to better results in terms of coverage as discussed below.

B. RQ2: Coverage and valid sequences with CNST

As can be seen from the results in Table III, our method
CNST, that generates test sequences following the constraints
imposed by the FSM of the system, leads to better (or equal)
results than the other approaches:

• The percentage of valid sequences is higher. In many
cases, other methods do not produce valid sequences. In
those cases, we must repair the sequences (with one of
the three proposed approaches) to still perform testing.

• The overall coverage (event pairs, states and transitions)
is higher or the same for CNST compared to the other
methods, because we can execute all the sequences since
they contain only valid events.

Note that the pairs coverage is computed only over the
number of feasible pairs because some of them cannot be
covered due to the constraints imposed by the system.

C. RQ3: Monitoring

By comparing the results obtained without using the moni-
toring optimization and the ones obtained with the monitoring
optimization (Table IV) we can see that the methods that
involve the repairment of the sequences generally have a
better or equal coverage when the monitoring is executed.
This is reasonable because without monitoring we have more
sequences that can fail and, in some cases, when the test
sequence is invalid we have to stop its execution before its

TABLE V
COVERAGE WITH AND WITHOUT MONITORING - AVERAGE AMONG

BENCHMARKS AND GENERATION METHODS

% Pairs Cov. % States Cov. % Transitions Cov.

No monitoring 42.25 72.5 42.35

Monitoring 42.69 78.75 45.00

Fig. 4. Number of pairs covered with different values for the parameter N
when the SKP method is used

termination. Also considering all the methods together (Table
V), the monitoring optimization always produces better results.

Moreover, in these experiments, the monitoring optimization
has shown to be not time consuming, so we expect that it is
a good choice to apply it.

D. RQ4: Correlation between the number of covered pairs
and N

When the sequence repairing process is used, the number of
the pairs covered is influenced also by the value chosen for the
parameter N (number of automata per batch). Figure 4 (in the
case of the PHD communication model) shows that for the
SKP repairment method, the number of covered pairs has a
growing trend with increasing N . This happens because if we
have long sequences, we can include into them more pairs and,
since we skip the events that are invalid, we can cover more
pairs. On the other hand, Figure 5 (in the case of the PHD
communication model) shows that for the STP repairment
method, the number of covered pairs has a decreasing trend
with the growth of N because having long sequences means
that, when an invalid event is reached, we stop the execution
of the whole sequence, so we do not execute a lot of events. A
similar behavior can be observed by using REJ. Contrariwise,
if the CNST method is used, the number of covered pairs
remains constant when N varies, because all the pairs that
are added in a test sequence satisfy all the constraints. This
means that, for SKP method, a big N can improve the coverage
while for STP and REJ it is better to have many short tests.

E. RQ5: Correlation between generation time and N

The tester can arbitrarily choose the value of N depending
on the generation and repairment method chosen but neverthe-
less, it is important to consider that the sequence generation

6

Fig. 5. Number of pairs covered with different values for the parameter N
when the STP method is used

Fig. 6. Sequence generation time [s] with different values for the parameter
N when the STP and pairwise testing are used

time increases exponentially with the increment of N , because
the intersection of N automata usually requires much more
time than the intersection of N − 1 automata, especially
for rather high value of N . Fig. 6 shows the correlation
between generation time and N when the constraints are
not considered in the generation phase (in the example the
STP method is used on the PHD benchmark). Even when
considering the constraints during the generation phase (CNST
method on the PHD benchmark) the correlation between N
and the generation time is exponential (see Fig. 7). However,
increasing N leads to smaller test suites, as shown in the
following RQ.

F. RQ6: Correlation between the length of the sequences and
N

Increasing the value of the number of automata per test (N)
obviously leads to a decrease of the number of sequences.
Moreover, increasing N the total number of events in the test
suite decreases too. Fig. 8 reports that the sum of the lengths
of each single sequence decreases when N increases. This is
reasonable because the more is the length of the sequence,
more possible is that we can avoid repeating the first event
of the pair we want to test. Even if Fig. 8 shows the plot
for the CNST method, we have verified that the same trend is
respected also by methods that repair the sequences.

Fig. 7. Sequence generation time [s] with different values for the parameter
N when the CNST and pairwise testing are used

Fig. 8. Total sequences length with different values for the parameter N
when the CNST method and pairwise testing are used

G. RQ7: Comparison between automata-based generation
method and SCAs

To compare the results obtained by our automata-based
method with the ones coming from the use of SCAs we
have computed also the coverage information for the 3-wise
testing (Table VI)2. We have generated the SCAs for each our
benchmark by using the tool provided by [24].

SCAs are based only on permutations of n events, thus
they don’t consider the constraints of the system. For this
reason, we need to repair even the sequences produced by
the SCAs generator. As the standard approach with SCAs
produces sequences all with the same length (equal to the
number of the events considered), the total length of the test
sequences is shorter than those obtained with our automata-
based method. Also the sequences generation time is shorter
because compute all the permutations is less complex than
compute the intersection among automata.

Table VII shows the summary of the comparison between
the coverage obtained by our method and the one by SCAs
(with different repairing procedures). The results confirm that
our automata-based method performs better than SCAs in
every analyzed aspects. Even comparing the coverage of the

2For the PHD benchmark we had to reduce the value of N due to the high
complexity of the system: with N > 6 3-wise automata the generation times
out.

7

TABLE VI
METHOD EVALUATION (3-WISE TESTING)

B
en

ch
m

ar
k

M
on

ito
r.

M
et

ho
d

N #
Se

q.

M
ax

.L
en

.

M
in

.L
en

.

Av
g.

L
en

.

To
t.

L
en

.

#
Va

lid
Se

q.

#
C

ov
.t

ri
ad

s

#
C

ov
.s

ta
te

s

#
C

ov
.t

ra
ns

.

G
en

.t
[s

]

PHD NO CNST 6 1,775 22 10 15 28,076 1,775 10,648 5 65 538.37
PHD NO SKP 6 1,521 22 12 16 25,198 0 7,075 5 65 981.22
PHD NO REJ 6 1,521 21 12 16 25,178 0 0 0 0 827.73
PHD NO STP 6 1,521 22 12 16 25,277 0 1,298 5 42 881.79

PHD YES CNST 6 1,775 23 11 15 28,032 1,775 10,648 5 65 7475.46
PHD YES SKP 6 1,521 21 12 16 25,159 0 7170 5 65 7754.58
PHD YES REJ 6 1,521 21 12 16 25,165 0 0 0 0 7329.89
PHD YES STP 6 1,521 21 11 16 25,194 0 1,263 5 39 7109.64

Pattern rec. NO CNST 10 1 6 6 6 6 1 8 5 5 0.09
Pattern rec. NO SKP 10 1 6 6 6 6 1 8 5 5 0.10
Pattern rec. NO REJ 10 1 6 6 6 6 1 8 5 5 0.08
Pattern rec. NO STP 10 1 6 6 6 6 1 8 5 5 0.09

Pattern rec. YES CNST 10 1 6 6 6 6 1 8 5 5 0.10
Pattern rec. YES SKP 10 1 6 6 6 6 1 8 5 5 0.09
Pattern rec. YES REJ 10 1 6 6 6 6 1 8 5 5 0.08
Pattern rec. YES STP 10 1 6 6 6 6 1 8 5 5 0.09

Elevator NO CNST 10 12 15 10 12 147 12 125 4 6 3.39
Elevator NO SKP 10 43 16 11 12 554 0 65 4 6 162.74
Elevator NO REJ 10 43 16 11 13 561 0 0 0 0 146.56
Elevator NO STP 10 43 15 11 13 565 0 0 3 2 154.50

Elevator YES CNST 10 13 14 10 12 158 13 125 4 6 4.67
Elevator YES SKP 10 43 16 11 13 565 0 65 4 6 161.99
Elevator YES REJ 10 43 15 10 13 561 0 0 0 0 190.43
Elevator YES STP 10 43 15 11 13 561 0 1 4 5 157.33

Vault NO CNST 10 1 5 5 5 5 1 10 6 5 0.97
Vault NO SKP 10 11 12 5 9 108 0 10 6 5 5.47
Vault NO REJ 10 11 12 7 9 107 0 0 0 0 4.13
Vault NO STP 10 11 11 6 9 109 0 10 6 5 4.28

Vault YES CNST 10 1 5 5 5 5 1 10 6 5 1.26
Vault YES SKP 10 11 11 8 9 107 0 10 6 5 4.08
Vault YES REJ 10 11 12 8 10 111 0 0 0 0 4.58
Vault YES STP 10 11 12 9 10 112 0 1 4 3 4.26

SCAs with the one got by repairing the sequences obtained
by using automata-based approach, the results are the same
(51.10% of overall coverage for automata-based method vs
29.03% for SCA standard approach) excepts for the percentage
of valid sequences, since SCAs generate fewer test sequences.
The results tell that the automata-based method is overall
better than SCAs method, and it is confirmed by the paired
t-test [32] with:

• H0: the two methods perform in the same way, in terms
of coverage

• 8 degrees of freedom
• t = 3.8507
• pvalue = 0.004873
• α = 0.05

We can see that pvalue < α, so we can reject the hypothesis
H0 and claim that our method performs better.

V. RELATED WORK

Combinatorial interaction testing (CIT) has been shown to
be an effective approach to manage the complexity of the
test of event-based software. In the last years, because of the

TABLE VII
COMPARISON BETWEEN SCAS AND AUTOMATA-BASED METHOD (3-WISE

TESTING)

Va
lid

Se
q.

Tr
ia

ds
C

ov
.

St
at

es
C

ov
.

Tr
an

s.
C

ov
.

Av
g.

C
ov

Automata-based CNST 100.00% 100.00% 100.00% 95.29% 98.43%

Automata-based SKP 0.06% 66.77% 100.00% 95.29%
REJ 0.06% 0.07% 25.00% 5.88% 51.10%
STP 0.06% 12.00% 92.50% 62.35%

SCAs SKP 2.17% 26.44% 85.00% 57.65%
REJ 2.17% 0.00% 15.00% 2.35% 29.03%
STP 2.17% 0.15% 50.00% 24.17%

growth of the number of software based on the interaction
with the user, the combinatorial sequence testing (CST) has
been used in many fields.

The classical approach for CST requires the use of Sequence
Covering Arrays (SCAs) [8], [29], [36], that provide a set of
permutations of the events supported by the system. Many
techniques have been proposed to generate these kind of data.

In [1], the authors apply combinatorial-based event se-

8

quence methods to test Android applications, aiming to min-
imize the execution of events and maximize the coverage
of event combinations. However, they only use a greedy
algorithm and they don’t consider the constraints about the
order of events imposed by the SUT. CST has been also used
for browser fingerprinting in [14], where the authors show
that combinatorial properties have an impact on browsers’
behavior during the TLS handshake with a server, and in [31]
where an interaction-based test sequences generation method
for testing Web Apps is proposed. The same TLS protocol has
been tested also in [13], where weighted t-way sequences are
used to derive sequence test cases for its testing. The methods
described in [18] can be used for testing mission critical
systems that accept multiple inputs and generate outputs to
several communication links, where it is important to test the
order in which events occur.

A different technique is used in [25], where the authors
present a feasible test suite generation technique using a meta
heuristic search called Simulated Annealing (SA) for T-way
EDISTC-SA generator.

The main problem of the application of combinatorial
testing in actual event-based systems is that, in many cases,
some event can be fired only when a certain event has already
been fired. This is why it is essential to consider also the
constraints of the system while generating test sequences. The
authors of [2] describe an approach to test suite generation for
Constrained Combinatorial Testing (CCT) based on Answer
Set Programming. In [7], the authors propose a solution for
CCT in which the constraints on the input parameter values
are expressed as logical predicates that can be solved by a
formal logic tool.

Another approach that aims to deal with constraints in CIT
is the algorithm IPOG-C [34] which includes optimizations to
improve the performance of constraints handling. In [20], two
novel algorithms to deal with constraints in CIT are presented:
CCS (Construct Constraint Set) and CTWC (Combinatorial
Testing With Constraint). The former computes implied con-
straints, while the latter uses the results of CCS to facilitate
the test generation process.

Latest software systems permit a high configurability, in
terms of parameter. In this research field, CIT has become
widely used. For example, the authors of [11] describe how
CIT can be extended, by adding some new testing policies able
to check if the model correctly identifies constraints among the
various software parameters.

In the methods described into this paper we have used FSMs
to represent the constraints of the system. Other notations have
been proposed in other papers. For example, in [9], the authors
develop a notation for specifying sequencing constraints and
present a t-way test sequence generation method that handles
the constraints specified in this notation. The authors of
[12] discuss automatic test sequence generation and coverage
criteria for testing abstract state machine (ASMs).

VI. CONCLUSIONS

Testing event-based systems can be very challenging be-
cause most of them are described using incomplete Finite State
Machines. For this reason, it is possible that a specific input
cannot be applied when the system is in a particular state, or
also that the response of the system for it is not defined.

Classical approaches used to test event-based systems use
Sequence Covering Arrays (SCA) but they do not consider
the constraints imposed by the system, so some of the test
sequences can be useless or in need of repair.

In this paper, we have proposed a novel solution for test-
sequences generation that exploits the FSMs and their repre-
sentation through automata. The approach consists in using
the SUT FSM as a description of constrains, turned into an
automaton, and representing each tuple of events to be tested
with a t-wise automaton. The intersection between the two
kinds of automata, if it exists, produces another automaton
that comply with the constraints of the system and covers
the considered tuple. We have also devised three repairing
methods that allow the execution of invalid test sequences,
by rejecting the whole sequence, skipping the wrong event or
stopping at the first wrong event.

Our method has shown better performance (in terms of
coverage and valid sequences) than the standard SCAs ap-
proach, even when the repairment of the test sequences is
applied. Moreover, with the automata-based method we can
also generate test sequences with multiple repetitions of the
same event (for example by testing the pair ei−ei), while with
SCA, a single occurrence for each event is allowed. This is an
important aspect because some systems can show malfunctions
only when an event is repeated multiple times. Using automata
to generate tests can be very time consuming and, for this
reason, we have introduced a limit on the number of t-wise
automata that can be collected together.

As future work, we will try to apply this method in systems
that do not have a well know FSM structure, by applying a
preprocessing procedure to automatically learn the behavior of
the SUT and representing it using the FSM formalism or an
automata-based representation.

REFERENCES

[1] D. Adamo, D. Nurmuradov, S. Piparia, and R. Bryce. Combinatorial-
based event sequence testing of android applications. Information and
Software Technology, 99:98–117, jul 2018.

[2] M. Banbara, K. Inoue, H. Kaneyuki, T. Okimoto, T. Schaub, T. Soh,
and N. Tamura. catnap: Generating test suites of constrained combi-
natorial testing with answer set programming. In Logic Programming
and Nonmonotonic Reasoning, pages 265–278. Springer International
Publishing, 2017.

[3] G. Becci, G. Dhadyalla, A. Mouzakitis, J. Marco, and A. D. Moore.
Robustness testing of real-time automotive systems using sequence cov-
ering arrays. SAE International Journal of Passenger Cars - Electronic
and Electrical Systems, 6(1):287–293, apr 2013.

[4] A. Bombarda, S. Bonfanti, A. Gargantini, M. Radavelli, F. Duan,
and Y. Lei. Combining model refinement and test generation for
conformance testing of the IEEE PHD protocol using abstract state
machines. In Testing Software and Systems, pages 67–85. Springer
International Publishing, 2019.

[5] R. C. Bryce, S. Sampath, and A. M. Memon. Developing a single
model and test prioritization strategies for event-driven software. IEEE
Transactions on Software Engineering, 37(1):48–64, jan 2011.

9

[6] A. Calvagna and A. Gargantini. A logic-based approach to combinatorial
testing with constraints. In B. Beckert and R. Hähnle, editors, Tests and
Proofs, pages 66–83. Springer Berlin Heidelberg, 2008.

[7] A. Calvagna and A. Gargantini. A formal logic approach to constrained
combinatorial testing. Journal of Automated Reasoning, 45(4):331–358,
apr 2010.

[8] Y. M. Chee, C. J. Colbourn, D. Horsley, and J. Zhou. Sequence covering
arrays. SIAM Journal on Discrete Mathematics, 27(4):1844–1861, jan
2013.

[9] F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn. An approach to t-way
test sequence generation with constraints. In 2019 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, apr 2019.

[10] J. Ferrer, P. M. Kruse, F. Chicano, and E. Alba. Search based algorithms
for test sequence generation in functional testing. Information and
Software Technology, 58:419–432, feb 2015.

[11] A. Gargantini, J. Petke, M. Radavelli, and P. Vavassori. Validation of
constraints among configuration parameters using search-based combi-
natorial interaction testing. In Search Based Software Engineering, pages
49–63. Springer International Publishing, 2016.

[12] A. Gargantini and E. Riccobene. Asm-based testing: Coverage criteria
and automatic test sequence generation. Journal of Universal Computer
Science, 7, 02 2003.

[13] B. Garn, D. E. Simos, F. Duan, Y. Lei, J. Bozic, and F. Wotawa.
Weighted combinatorial sequence testing for the TLS protocol. In 2019
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, apr 2019.

[14] B. Garn, D. E. Simos, S. Zauner, R. Kuhn, and R. Kacker. Browser
fingerprinting using combinatorial sequence testing. In Proceedings of
the 6th Annual Symposium on Hot Topics in the Science of Security -
HotSoS '19. ACM Press, 2019.

[15] C. S. Jensen, M. R. Prasad, and A. Møller. Automated testing with
targeted event sequence generation. In Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis - ISSTA 2013.
ACM Press, 2013.

[16] S. K. Khalsa and Y. Labiche. An orchestrated survey of available
algorithms and tools for combinatorial testing. In 2014 IEEE 25th
International Symposium on Software Reliability Engineering. IEEE,
nov 2014.

[17] T. Kitamura, A. Yamada, G. Hatayama, C. Artho, E.-H. Choi, N. T. B.
Do, Y. Oiwa, and S. Sakuragi. Combinatorial testing for tree-structured
test models with constraints. In 2015 IEEE International Conference on
Software Quality, Reliability and Security. IEEE, aug 2015.

[18] D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and Y. Lei.
Combinatorial methods for event sequence testing. In 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation. IEEE, apr 2012.

[19] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. IPOG: A
general strategy for t-way software testing. In 14th Annual IEEE Inter-
national Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS'07). IEEE, mar 2007.

[20] L. Li, Y. Cui, and Y. Yang. Combinatorial test cases with constraints
in software systems. In Proceedings of the 2012 IEEE 16th Interna-
tional Conference on Computer Supported Cooperative Work in Design
(CSCWD). IEEE, may 2012.

[21] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek. Reducing
combinatorics in GUI testing of android applications. In Proceedings of
the 38th International Conference on Software Engineering - ICSE '16.
ACM Press, 2016.

[22] A. Møller. dk.brics.automaton – finite-state automata and regular ex-
pressions for Java, 2017. http://www.brics.dk/automaton/.

[23] C. Nie and H. Leung. A survey of combinatorial testing. ACM
Computing Surveys, 43(2):1–29, jan 2011.

[24] NIST. NIST sequence covering array generator. https:
//csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/
event-sequence-testing/unders, 2016.

[25] M. M. Rahman, R. R. Othman, R. Ahmad, and M. Rahman. A
meta heuristic search based t-way event driven input sequence test
case generator. International Journal of Simulation Systems, Science
& Technology (IJSSST), 15:70–77, 01 2015.

[26] C. W. Rapp. SMC – the state machine compiler, 2019.
http://smc.sourceforge.net/.

[27] Y. Sheng, C. Sun, S. Jiang, and C. Wei. Extended covering arrays for
sequence coverage. Symmetry, 10(5):146, may 2018.

[28] D. E. Simos, L. Kampel, and M. Ozcan. Combinatorial methods
for testing communication protocols in smart cities. In R. Battiti,
M. Brunato, I. Kotsireas, and P. M. Pardalos, editors, Learning and
Intelligent Optimization, pages 437–440, Cham, 2019. Springer Interna-
tional Publishing.

[29] G. Tzanakis. Covering arrays from maximal sequences over finite fields.
[30] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme. Modeling

software with finite state machines: a practical approach. Auerbach
Publications, 2006.

[31] W. Wang, S. Sampath, Y. Lei, and R. Kacker. An interaction-based
test sequence generation approach for testing web applications. In 2008
11th IEEE High Assurance Systems Engineering Symposium. IEEE, dec
2008.

[32] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering. Springer Berlin
Heidelberg, 2012.

[33] L. Yu, Y. Lei, R. N. Kacker, D. R. Kuhn, R. D. Sriram, and K. Brady.
A general conformance testing framework for IEEE 11073 PHD's com-
munication model. In Proceedings of the 6th International Conference
on PErvasive Technologies Related to Assistive Environments - PETRA
'13. ACM Press, 2013.

[34] L. Yu, Y. Lei, M. Nourozborazjany, R. N. Kacker, and D. R. Kuhn.
An efficient algorithm for constraint handling in combinatorial test
generation. In 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation. IEEE, mar 2013.

[35] X. Yuan, M. Cohen, and A. M. Memon. Covering array sampling of
input event sequences for automated gui testing. In Proceedings of
the twenty-second IEEE/ACM international conference on Automated
software engineering - ASE '07. ACM Press, 2007.

[36] R. Yuster. Perfect sequence covering arrays. Designs, Codes and
Cryptography, nov 2019.

10

https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/event-sequence-testing
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/event-sequence-testing
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/event-sequence-testing

	Introduction
	Background
	Combinatorial sequence testing of FSMs

	Combinatorial Sequences Generation
	Generation of only valid tests
	Monitoring

	Method evaluation
	RQ1: Sequence generation time and system size
	RQ2: Coverage and valid sequences with Cnst
	RQ3: Monitoring
	RQ4: Correlation between the number of covered pairs and N
	RQ5: Correlation between generation time and N
	RQ6: Correlation between the length of the sequences and N
	RQ7: Comparison between automata-based generation method and SCAs

	Related work
	Conclusions
	References

