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‘We advocate the need for automated support to System Requirement Analysis in the development
of time- and safety-critical computer based systems. To this end we pursue an approach based
on deductive analysis: high-level, real-world entities and notions, such as events, states, finite
variability, cause-effect relations, are modeled through the temporal logic TRIO, and the resulting
deductive system is implemented by means of the theorem prover PVS. Throughout the paper,
the constructs and features of the deductive system are illustrated and validated by applying them
to the well-known example of the Generalized Railway Crossing.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based systems]:
Real-time and embedded systems; D.2.1 [Software Engineering]: Requirements/Specifications—
Methodologies, tools; D.2.4 [Software Engineering]: Software / Program Verification—Formal
methods; 1.6.4 [Computing Methodologies]: Model Validation and Analysis

1. INTRODUCTION

Computer based time- and safety-critical systems are acquiring increasing social,
economic, and environmental importance. Their intended purpose and properties
must be clearly understood, explicitly and unambiguously stated, and formally
verified, or even certified. This is particularly true for properties related to safety
in fields such as transportation, where recent regulations require that the system
certification be performed by a third-party authority, distinct from both the system
constructor and the user or the transportation service provider.

Computer-based critical systems, however, are not simple devices confined inside
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a box, just performing some numeric or symbolic computation: they are usually
embedded systems in charge of supervision, signaling, or control tasks. To reach
their intended purpose they must interact with their environment by means of
sensors and actuators, trying to maintain the ambiance, or the part of it that is
under their control, in a consistent and safe state. They typically reach this goal
by reacting to stimuli, computing and updating internal state variables, acting
on physical entities through their actuators. For instance a control system for a
Railway Crossing is composed of a computer that interacts with the environment
(the rail yard, the crossing street, the bars, etc.) through sensors on the tracks,
and actuators on the bar.
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High level design of the computerized component of a critical system (hereinafter
called the device under construction, DUC) is not performed in a vacuum but
strongly depends on models and assumptions regarding, besides the DUC itself,
the environment, the sensors and the actuators.

Therefore writing the design specifications, from which the development of the
DUC can start, is not the first activity of the development process, but must be
the result of a preliminary phase whose purpose is to state, analyze and prove the
user requirements (typically stated very abstractly in terms, e.g., of some safety or
utility property) by modeling the system in its entirety, including the DUC and all
the other components. In a very abstract logical setting, this preliminary activity
consists of analyzing, validating, and eventually proving the following implication
[Zave and Jackson 1997]:

EnvModel A SensorModel N\ Actuator Model N DesignSpec — UserReq (1)

i.e., the user requirements are ensured if the DUC is constructed according to its
specification, and placed, together with correctly functioning sensors and actuators,
inside an environment that satisfies the original assumptions on the behavior of
external entities.

This analysis is often considered trivial and performed, if at all, only informally.
For real-world critical systems, however, the formalization of some of the compo-
nents of the above implication (especially the user requirements, the environment
model, and the design specification) may hide subtle difficulties, hence the necessary
analysis requires a substantial effort, and can be complex and error prone.

Thanks to decades of research, the design and development of computer-based
artifacts (e.g., programs, dedicated hardware) starting from well written, detailed,
possibly formal design specifications is becoming increasingly systematic and re-



Automated Deductive Requirements Analysis of Critical Systems . 3

liable, being supported by suitable methods and tools. It is widely recognized
[Leveson 1995] that for critical systems the great majority of catastrophic fail-
ures during operation are traced back to poor (incomplete, inconsistent, or simply
wrong) design specifications. It is also widely acknowledged that the cost of cor-
recting specification errors that are unveiled in the final testing phases or even at
operation time, is order of magnitudes higher than that of fixing design or coding
errors.

For this reason, relevant research efforts are being devoted to the above described
preliminary analysis, which is often called System Requirements Analysis (SRA)
[Komoda et al. 1981; Dutertre and Stavridou 1997] to emphasize that requirements
(and hence specifications) are analyzed and validated, and that not only the DUC
is analyzed, but also the other system components and the environment as well.
SRA is a typical cooperative, interdisciplinary work, since it is performed jointly
by experts of the application domain, users, representatives of regulating agencies,
and computer engineers.

The above described purpose and features of SRA impose several, sometimes
conflicting requirements on the modeling notation and on the methods and tools
adopted in the analysis.

The modeling and analysis activities must be automated, to provide a support in
dealing with complexity, to obtain mechanized checks for correctness, completeness,
and consistency, and to certify the obtained results. This in turn requires the adop-
tion of a formal notation, which also ensures absence of ambiguity, thus preventing
misinterpretation among people, participating to SRA, who often have quite hetero-
geneous cultural backgrounds. To facilitate communication, discussion, and mutual
understanding, the formal notation must be flexible, expressive, and high level. It
must be able to model in a natural way real-world entities, basic notions such as
events, actions, states (i.e., properties or values of system components, possibly
having non-null duration), continuity or finite variability, (non)determinism, and
cause-effect relations.

Operational notations (such as state-transition systems, Petri nets, ...) are very
attractive as modeling languages: they include or easily express most of the above
mentioned intuitive, real-world notions. However, SRA requires not only modeling
capability, but also the ability to express requirements (i.e., desired properties)
and relations among them (necessity, compatibility, mutual exclusion, ...). On the
other hand pure descriptive notations, like first- or higher-order logic, are too low
level if considered in isolation, as they do not encompass exactly those notions that,
as noted above, are incorporated into most operational notations.

A special attention must be devoted, by notations and methods supporting SRA,
to the representation of time: the notation must be rich and flexible enough to
model both computer components, which are typically digital, synchronous, and
clock based, and other non-digital components, which, often consisting of elec-
trical, chemical, or mechanical processes, are time-continuous. Notice that many
program or temporal logics originally devised to model execution on digital comput-
ers, are unable to describe continuous phenomena: their assumption of a discrete
time and of a stepwise execution of state transitions, leads to models based on
finite or denumerable infinite state sequences. Discrete state sequences model ade-
quately program execution but are unable to describe truly asynchronous systems,
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where the distance in time between related events does not have a lower bound.
Furthermore, since timing aspects are quite relevant for all critical systems, time
should not be treated as just one more system component or (state) variable, but
it should deserve a special treatment. Time modalities are very deeply embedded
in human temporal representation and reasoning: think for instance of a phrase
like: ”If the train enters the safety region then, when the train will cross the road,
the bar will have been completely lowered since at least 30 seconds”. It is therefore
apparent that the adoption of intuitive constructs supporting modeling and anal-
ysis of time-related system features can significantly facilitate understanding and
communication in the framework of SRA.

In the present work we propose a framework for SRA where the system is mod-
eled by means of a temporal logic language enriched with constructs representing
high level intuitive notions (such as events, states, continuity, finite variability,
cause-effect relation, etc.) formalized through logic entities (predicates, variables,
functions) and suitable axioms. Analysis and proof of properties are carried out by
means of deductive reasoning in a very uniform, systematic manner, based on simple
propositional reasoning (e.g. on Case Analysis), first order generalization, induc-
tion. Thanks to the ability of the logic to represent real-world entities, derivations
and their results -theorems, rejected conjectures, (counter)examples- are amenable
to any engineer and easily translatable into natural language, to favor understand-
ing by people lacking a mathematical background.

We choose TRIO [Ghezzi et al. 1990] as the modeling logic. TRIO is a typed, lin-
ear, metric temporal logic: the presence of types simplifies formulas and makes them
more readable; linearity of the underlying time model makes the logic amenable also
to engineers who are unfamiliar with Computer Science logics; the possibility to ex-
press quantitative time constraints allows specifiers to express precisely real-time
requirements. TRIO has been adopted in a variety of industrial projects [Gargan-
tini et al. 1996; Basso et al. 1998; Capobianchi et al. 1999; Ciapessoni et al. 1999],
thus demonstrating its applicability to real-life industrial applications. TRIO is also
embedded with object-oriented constructs for structuring specifications [Morzenti
and San Pietro 1994] (not exploited in the present work), and is provided with a
tool suite for analysis and verification based on simulation [Felder and Morzenti
1994] and testing [Mandrioli et al. 1995] that can be nicely integrated with the
deductive approach described in the present work.

Deductive analysis is automated by using the PVS [Owre et al. 1995] theorem
prover as a deductive computational engine: TRIO axioms stating properties and
modeling the behavior of system components are translated into an internal repre-
sentation in the higher order logic of PVS, and derivations are performed by means
of PVS proof strategies and decision procedures.

Of course the results presented here are not restricted to the pair TRIO/PVS:
any sufficiently expressive temporal logic and powerful theorem prover could be
exploited in a similar setting to perform SRA.

The present paper is structured as follows. The remainder of this introduction
provides basic context information concerning the case study we adopt as a run-
ning example (Section 1.1), and the temporal logic language TRIO (Section 1.2).
Section 2 shows how real-world notions such as events, states, continuity, and finite
variability can be modeled in TRIO by means of suitable specification items (pred-
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icates, variables ...) and axioms. Section 3 introduces typical ways of modeling
temporal and causal relations among entities. Section 4 describes a tool supporting
SRA, covering the encoding of TRIO in the logic of PVS, the proof strategies, the
pretty-printer (useful for hiding the details of the encoding in the visualization of
TRIO formulas), and illustrates its application to the proof of two relevant proper-
ties in the case study. Section 5 contains a brief review of related literature. Section
6 draws conclusions, and relates on possible applications of the proposed approach
and on future research.

1.1 Our case study: General Railroad Crossing problem

To illustrate our method and to demonstrate its ability to deal with real world
cases, we use the general railroad crossing (GRC) problem as a running example
for almost every concept and construct hereafter introduced. The GRC problem
was originally proposed in [Heitmeyer et al. 1993] and since then it has been used
as a benchmark for a vast number of real-time languages. Furthermore it was
recently used as a case study for comparing methods and tools for the analysis
of critical systems [Heitmeyer and Mandrioli 1996]. The problem is here briefly
reported. GRC describes a rail road crossing, i.e. an intersection between a road
and several train tracks with a gate to prevent crossing during train passage. For
sake of simplicity we assume that every train travels in the same direction. Two
regions R and I, surrounding the crossing, are defined as depicted below:

train direction %

“ Sensors § sensors”
R

Trains enter region R, then enter the critical region I and finally leave the area.
Trains entering and leaving region R are detected by means of sensors placed on the
track. Notice that several trains, up to the number of tracks, can simultaneously
cross the region borders. Trains take a minimum time d,,, and a maximum time djs
to go from the beginning of R to the beginning of I, and a minimum time h,, and
a maximum time hys to go from the beginning of region I to its end (thus exiting
also the region of interest for the GRC). The system must ensure that the bar is
closed when a train is in region I (safety property), but, to avoid needless blocks
on the road, it must also ensure that the bar is down only when strictly necessary
(utility property). The controller operates the bar by means of the following two
commands up and down; the bar current position or state of motion is one of:
closed, open, moving up (when opening), and moving down (when closing). The
bar movement can be reversed by means of a command, i.e when it is moving up
(down) and it receives a down (up) command it will start moving down (up). The
angle of the bar increases (when the bar is moving up) and decreases (when the
bar is moving down) with a constant speed. It takes the bar 7 time units to reach
the closed (respectively, open) position starting from an open (respectively, closed)
state.

The controller adopts the following policy: starting from data coming from sen-
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Futr(F, d) d > 0 A Dist(F,d) future

Past(F, d) d > 0 A Dist(F,—d) past

Lasts(F, d) vd' (0 < d' < d — Futr(F,d")) F holds over a period of length d

Lasted(F, d) vd'(0 < d' < d— Past(F,d")) F held over a period of length d

Alw(F) VdDist(F, d) F always holds

AlwF (F) Vd(d > 0 — Futr(F,d)) F will always hold in the future

AlwP(F) Vd(d > 0 — Past(F,d)) F held always in the past

Until(A1, A2) 3t (t > 0 A Futr(As,t) A Lasts(A1,t))  Ap holds until A» becomes true

Som(F) 3dDist(F, d) Sometimes F held or will hold

SomP(F) 3d(d < 0 A Dist(F,d)) F held sometimes in the past

UpToNow(F) 3d (d > 0 A Lasted(F, d)) F held for an interval before now

NowOn(F) 3d(d > 0 A Lasts(F, d)) F holds for an interval after now

Becomes(F') UpToNow(—F) A (F V NowOn(F)) F has not held before now, but it
holds now (or now on) !

LastTime(F,t)  Past(F,t) A Lasted(—F,t) F occurred for the last time ¢ units
ago

NeztTime(F,t) Futr(F,t) A Lasts(—F,t) F will occur the first time at ¢ units

Table 1. Derived temporal operators

sors it computes the number of trains that might possibly be in the region I. When-
ever this number becomes positive, the controller issues a command to lower the
bar, while whenever the number becomes null it issues a command to raise the
bar. When lowering the bar, the controller takes into account the delay required
by the bar to reach the closed position, and it sends the down command - time
units before the earliest expected time for train entrance in region I (no similar
adjustment is necessary with reference to train exit from region I).

1.2 TRIO: a short language overview

TRIO is a first order logic augmented with temporal operators that allow one to
express properties whose truth value may change over time. The meaning of a TRIO
formula is not absolute, but is given with respect to a current time instant which
is left implicit. The basic temporal operator is called Dist: for a given formula W,
Dist(W, t) means that W is true at a time instant whose distance is exactly ¢ time
units from the current instant, i.e., the instant when the sentence is claimed. Many
other temporal operators can be derived from Dist, as shown in Table 1.

Notice that operators expressing a duration over a time interval (for example
Lasts), do not specify the value of their argument outside the interval. Furthermore,
note that for this kind of operators we gave definitions where the extremes of the
specified time interval are excluded, i.e. the interval is open. Operators including
either one or both of the extremes can be easily derived from the basic ones. For
notational convenience, we indicate inclusion or exclusion of extremes of the interval
by appending to the operator’s name suitable subscripts, i or e, respectively. A few
examples regarding the operators Lasts, Lasted, AlwF and SomP follow.

Lastsi.(F,d) Vd'(0<d <d— Dist(F,d'))
Lasted;;(F,d) Yd'(0 <d < d— Dist(F,—d))
AlwF;(F) vd(d > 0 — Dist(F,d))
SomP;(F) 3d(d < 0 A Dist(F, d))

IThe definition of Becomes is slightly different from that provided in other previous works.



Automated Deductive Requirements Analysis of Critical Systems . 7

|
T

a b

Fig. 1. Event and interval predicate

TRIO introduces time dependent (TD) predicates, possibly associated to a dis-
tinct relation for every time instant, and TD variables in a domain D, as vari-
ables whose value changes in D over time. For instance, TD variables are suitable
to model enumerative values and continuously changing values, as many physical
quantities. To refer to values of a variable or term in the past or in the future, the
operator dist (as generalization of Dist) is introduced: for a given term z, dist(z,t)
has the value that z had or will have at a time instant whose distance is ¢ from
now. The operators futr and past, derived from dist, refer to values of a TD variable
respectively in the future and in the past.

2. FUNDAMENTAL TIME RELATED ENTITIES

In this section we introduce the notion of event (as a predicate that holds at isolated
time points), the notion of interval predicate (a predicate that holds, or does not
hold, for non-empty temporal intervals), and we define the notion of non-Zeno
predicate (a predicate whose truth value does not change “infinitely often”), with
some illustrative examples. Then we present some interesting properties of such
types of predicates. Finally we generalize these definitions to formulas and to time
dependent variables ranging on countable or uncountable domains. All the notions
presented are formally defined in terms of TRIO axioms that are intended as always
valid, hence implicitly enclosed in an outermost Alw operator.

2.1 Point-based predicates

We call point-based or events the predicates that hold in isolated time points, and
are false elsewhere. Their behavior is visualized in Figure 1. Their formal definition
in terms of TRIO is as follows.

Definition 1. point-based predicate: a TD predicate E is called point-based or
event iff:

E — UpToNow(—E) A NowOn(—E)

A point-based predicate has therefore a null duration. This definition is clearly an
abstraction, since in nature no event has a null duration. This kind of abstraction is
very common among formal methods modeling real time systems, as null duration
events are suitable to formalize natural events, whose duration is small with respect
to the reaction times of the system. Allowing events with null duration could
introduce inconsistencies: for example, in presence of circular dependencies one
could have an unlimited number of occurrences of the same event with no time
progression. This problem can be avoided by introducing suitable properties and
definitions as shown in Section 2.3. Some formal languages solve the problem by
banning events having null duration. See [Gargantini et al. 1999] for a survey of
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problems and proposed solutions and for a general solution using non standard
analysis.

Examples of point based predicates might be boolean messages between pro-
cesses, methods invocations, external inputs. For instance pure signals in SIGNAL
[Benveniste et al. 1991] might be modeled as events.

Example 1. In our GRC case study we use events to represent commands given
to the bar: up and down. Informally, when the bar receives an up command and it
is closed or it is moving down and closing, it starts opening. If it is opening or open
and it receives a down command, it starts closing. We think of these commands as
control pulses having a very small duration, which we consider null. &

2.2 Interval-based predicates

As opposed to point based predicates, we now consider predicates that keep their
value for entire time intervals. We call these interval-based predicates or simply
interval predicates. Informally, interval predicates hold true or false for intervals
with non-null duration, thus they are never true or false in isolated time points. A
diagrammatic representation of interval behavior is pictured in Figure 1.

From the intuitive definition we can define an interval predicate as follows:

Definition 2. interval-based predicate: a TD predicate I is interval-based iff:
(I =» (UpToNow(I)V NowOn(I))) A (=1 = (UpToNow(—I) V NowOn(-I)))

The meaning is exactly that an interval predicate cannot keep its value in isolated
time points, so if it is true (respectively, false) at a time point then there is an
interval, following or preceding it, where it is true (respectively, false).

Notice that this definition does not tell anything about the value of I at the
precise instants when I changes its value from true to false or vice versa (points a
and b in Figure 1). Thus time intervals where the predicate keeps its value, might
be open or closed (i.e. they may or may not contain their end-points). Several
choices can be made about the predicate value at such instants, but there are
two main possible behaviors (shown in Figure 2): we say that a predicate is left
(right) continuous, if it has the value it has had in the immediate previous (next)
neighborhood. In TRIO this can be formalized as follows:

Definition 3. left continuous interval based predicate:
(I » UpToNow(I)) A (=1 = UpToNow(—I))
right continuous interval based predicate:

(I = NowOn(I)) A (=1 = NowOn(—I))

Some “philosophical” arguments would support the choice of left continuity, others
would favor right continuity: a thorough discussion is reported in [Gargantini and
Morzenti 1999]. At this point one choice is worth the other one. For the time being
we do not explicitly choose a type of behavior against the others: we will however
return to this issue in Section 2.6 and in Section 2.10, when we will make a choice.
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Fig. 2. Left and right continuous interval predicates

2.3 Non-Zeno requirement for predicates

In this Section we define the non-Zeno or finite variability requirement [Abadi and
Lamport 1994] for a TD predicate, namely, that a predicate can only change its
value a finite number of times in a finite time interval. Since we did not establish an
a priori lower bound either on the duration of any interval predicate or on the dis-
tance between two occurrences of any event, a predicate may have a Zeno behavior,
changing value an unbounded number of times in a finite interval. Only non-Zeno
behaviors are physically meaningful. For this reason the non-Zeno requirement has
to be explicitly introduced, otherwise, being the time model continuous, specifica-
tions would be exposed to incompleteness and even simplest intuitive properties
would be false, as shown by the following example.

Ezxample 2. a simple Zeno event: consider the event F, defined by the following
formula, where ¢ is a real, and n is a natural number:

vt <Pa5t(E,t) < dn <t = l))
n
111

E occurs only in the past at a distance, from the current time, of 1, 3, 3, 7, ...
time units. Moreover E does not occur at the present time. Its behavior is pictured
below:

) ) ) e o
| | | |
| | | |
| | | |
| | | |
| | | |

1 12 U3 -4 Now

E is a Zeno event, as it occurs infinite times near the current instant now. Pred-
icate E does not satisfy the following property:

-E — 3Je Lasted(—E,¢)

having the following meaning, quite intuitive for a predicate E modeling the notion
of event: if E is false now then there is a left neighborhood of now where F is false;
otherwise F would occur an infinite number of times immediately before now. <

An informal definition of the non-Zeno requirement for a predicate A is that there
exists a time interval (arbitrarily small) where A is constantly true or it is constantly
false. Formally we suggest this definition:

Definition 4. non-Zeno requirement for TRIO predicate: a TD predicate
A is non-Zeno iff:

(UpToNow(—=A) VUpToNow(A)) A (NowOn(—-A) V NowOn(A))
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The first conjunct (with UpToNow) guarantees that there is no accumulation point
of changing instants before the current instant, whereas the second part (with
NowOn) guarantees the same fact after the current time. For a non-Zeno predi-
cate it is therefore meaningful to use locutions such as “The value of predicate P
immediately before (or after) the current time”.

The predicate F in the previous example (example 2) does not satisfy the non-
Zeno requirement. In the current instant neither UpToNow(—E) nor Up ToNow(E)
hold, because there is no e such that Lasted(E,¢) or Lasted(—E,¢).

Note 1. The non-Zeno requirement does not imply that there is a minimum time
distance between any two changes of value of a predicate, but that there is such
a distance. Consider for example, two predicates A; and A,, whose behavior is
depicted in the following figure.

ANVA?

If they are independent (for example two inputs in an asynchronous system)
the distance d between a change of A; and the change of A; might be arbitrarily
small. If this distance had a lower bound then Zeno behavior would not be possible
and we might as well adopt a model based on discrete time (like the integers).
This is the case of synchronous, clock based systems, where every input arrives at
time instants that are multiple of some quantity (the period of the clock). Indeed
some formal languages follow this approach and enforce a fixed minimum delay
between two actions. However, for asynchronous systems, there is no lower bound
for quantity d, time must be considered continuous, and Zeno behaviors must be
taken into account and explicitly excluded. Section 5 reports on related works
adopting solutions similar to ours.

2.4 Non-Zeno point and interval predicates

The proposed definitions of point and interval predicates, of left- or right-continuous
predicate, and of non-Zeno predicate are independent; they can be combined (as
pictured in Figure 3) to obtain formal definitions of non-Zeno events and non-
Zeno interval predicates (formal propositions are reported in Table 4 and proofs
of equivalence are in [Gargantini and Morzenti 1999]). These are the predicates of
practical interest. The events up and down introduced in the Example 1 are more
precisely non-Zeno events.

2.5 Generalization to TRIO formulas

The definitions presented in the previous sections with reference to predicates can
be generalized to formulas by just replacing in each definition the predicate with
an entire TRIO formula. For example, the definition of a non-Zeno event formula
becomes:
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i I
TRIO predicates
non-Zeno .
Predicates non-Zeno Interval Predicates
[ non-Zeno left continuous interval predicates }
non-Zeno Events [ non -Zeno right contiunuous interval predicate%
Events L Interval Predicates
o J
Fig. 3. A subset system for TRIO Formula
|f|i|lci|e \/|f|i|lci|e
e El e e e e f f 1 e
lei f f lci lei | f f lei
i i i |
Flg f Folr

Table 2. Closure properties of logical operators

Definition 1. non-Zeno event formula : a TD formula F is a non-Zeno event
if and only if:

UpToNow(—F) A NowOn(—F)

Similar trivial adaptations can be devised for all the other definitions and theorems.

2.6 Fundamental properties and operators

Based on these definitions, we can establish interesting properties about formulas
obtained from the application of logical and temporal operators to the above defined
entities. The result of the application of the propositional operators A, -, and V
to operands of the various types is summarized by Table 2, where f stands for a
generic formula, ¢ for interval formula, lci for left continuous interval formula, and
e is for event. All the reported properties have been proven with the automatic
support of the TRIO theorem prover built on top of PVS.

Note 2. Remarks on particular results of logical operations (cases enclosed in
bozes in Table 2). If E is an event, and F a generic formula, E A F is still an
event, hence conditioned events (as defined in SCR [Heitmeyer et al. 1996]) are
still events. If Iy and I, are interval formulas, then neither Iy V I nor I; A Iy
are necessarily interval formulas, i.e., the class of interval formulas is not closed
with respect to logic conjunction nor disjunction. This fact is very unfortunate
because it makes almost useless this type of formula (and it jeopardizes all the
arguments given about the necessity of using interval formulas) (see also [Chaochen
and Hansen 1997]). Fortunately the class of left (as well as right) continuous interval
formulas is closed with respect to every operation. These closure properties provide
a strong motivation for adopting, in system modeling, a definite and uniform notion
of continuity for interval predicates. This approach is also adopted in other related
proposals. We will return to this subject again in Section 2.10.
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F is of type ... | e | lei F is of type ... | e | lei
Dist(F,d) e | lei Becomes(F) e El
UpToNow(F) lei NowOn(F) lei
Lasted;. (F,d) lei | lei Lasts;c (F,d) lei | lei
SomP, (F) lei | lci SomF;(F) lei | lci
AlwP, (F) lei | lci AlwF;(F) lei | lei
WithinPie (F) | lci | lci WithinFie (F) | lei | lei

Table 3. Temporal operators

Temporal operators

We have also proven (with the automated support of PVS) several interesting clo-
sure properties regarding temporal operators. Results are shown in Table 3. Note
that the basic TRIO operator Dist does not change the type of its argument: this
is easily understood by considering that Dist just performs a temporal shift on the
time axis. The operator Becomes always returns an event.

The above properties can be used to determine, in a systematic and reliable way,
the type of a compound TRIO formula, from that of its basic components, thus
avoiding direct formal proofs based on the definition of the various types of entity.
For instance if F and G are generic TD predicates, we can immediately be sure
that the formula Becomes(F) A G is an event.

2.7 Generalization to time dependent variables

Most concepts and definitions given so far for TRIO predicates and formulas can
be extended to TRIO time dependent (TD) variables. Indeed TD variables, as seen
for predicates, might in principle behave in a bizarre way, unlike any possible real
behavior. In this section we introduce some definitions providing constraints on
time dependent variables, useful for modeling real-world systems. These definitions
are the extension or generalization to variables of those given for predicates (in
fact, predicates might as well be considered as boolean variables: in this case the
following definitions for variables are equivalent to those given for predicates; this
analogy is fully exploited in higher-order logic, as we will briefly discuss in Section
4.2).

2.7.1 Point based variables and simultaneous events. Let us consider a system
variable that keeps a default value (for example null) at all times except for single
instants, where it has values in a given domain. To model this kind of variable we
introduce point based variables, defined as follows:

Definition 5. point variable: a TD variable v in a domain D is a point variable
with default value d € D if and only if:

v#d — UpToNow(v =d) AN NowOn(v = d)

Point variables might model data flows of LUSTRE [Halbwachs et al. 1992] and
SIGNAL [Benveniste et al. 1991]. In this language the default value is called
absence and denoted by L.

Furthermore point based variables with default value 0 can model events with
possibly multiple simultaneous occurrences; notice that this cannot be done by event
predicates, because at a given instant a (time dependent) predicate can model only
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whether an event occurs or not, not how many times. We will return to this subject
in Example 4.

2.7.2 Interval variables and counters. Informally interval variables are piecewise
constant variables, i.e., variables that keep their value for non-empty time intervals,
and do not hold a value in isolated time points.

Definition 6. interval variable: a TD wvariable v in a domain D is an interval
variable iff, for every value a € D:

v=a— (UpToNow(v = a) V NowOn(v = a))

Event counters, i.e., integer variables having as value the number of occurrences of
a given event, are a particular kind of interval variable. Given an event E we denote
its counter as #E. Note that E might be an event with simultaneous occurrences.
The definition of event counters will be given in Section 3.3.

Continuity. For interval variables definitions of continuity can be given in a way
similar to that seen for predicates.

Definition 7. left (right) continuity: a TD variable v in a domain D is a left
(right) continuous interval variable iff, for every a € D:

v=a — UpToNow(v = a)
(v=a = NowOn(v = a))

2.8 Non-Zeno requirement for variables

We now define the non-Zeno requirement, or finite variability requirement, for a
time dependent variable.

First, we consider variables in a countable domain (i.e., a domain that is either
finite or equal in cardinality to the set N of the naturals: it could be, for instance,
the set of the integer or rational numbers, or any subset thereof). In this case we
simply require that the variable changes its value a finite number of times in every
finite time interval, so that every finite interval can be split into a finite number
of intervals where the variable is constant. Therefore, at any time there are two
(arbitrarily small) left and right time intervals where the variable is constant:

Definition 8. non-Zeno variable in a countable domain: a TD wvariable v
in a countable domain D is non-Zeno iff:

Ja € DUpToNow(v =a)A3Jb € D NowOn(v = b)

Notice that we do not impose any requirement on the variable at single time points,
where it could have any value.

Variables with an uncountable domain. Next, we consider variables on uncount-
able domains, like for instance the reals or any interval of reals. This is the most
general case, and also quite frequent in practice: real-time systems are often hybrid
systems involving both real-valued physical variables and digital components.

The definition previously provided for countable domains, which requires a vari-
able to be piecewise constant, cannot be extended to uncountable domains, because
real-valued quantities might as well change continuously, thus assuming an infinite
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Fig. 4. Examples of Zeno and non-Zeno behaviors

number of values in a finite time interval: consider for instance a sinusoid or a
ramp.

However we cannot accept every possible behavior for real valued variable, be-
cause they typically represent real-world entities that are subject to physical laws.
Furthermore, we expect real-valued variables satisfying our non-Zenoness require-
ment to give rise to non-Zeno formulas when composed via arithmetic and relational
operators.

Informally, we require a non-Zeno variable v in an uncountable domain D to be
piecewise analytic when considered as a function of time?.

More formally, we define a variable v with values in a domain D to be non-Zeno
if, at every time, there exist two functions f and ¢: $ — D that are analytic at 0,
and such that v is equal to f in a right interval and to ¢ in a left interval of the
current time; if we denote as AF, the set of functions that are analytic at 0, the
non-Zeno requirement can be formalized as follows.

Definition 9. non-Zeno variable: a TD wvariable v in an uncountable domain
is non-Zeno iff:

3f3g(f,g € AF, A3dVt (0 < t < d— futr(v,t) = f(t) A past(v,t) = g(t)))

Notice that if the variable domain is countable this definition reduces to definition
8. Indeed, the only analytic functions with value in a countable domain are the
constant functions. Then the variable must be piecewise constant (see [Gargantini
and Morzenti 1999]).

Definition 9 provides us with a simple criterion to determine whether a variable
is non-Zeno. Let us for instance apply this criterion to a few particular, yet very
common cases. A constant variable is certainly non-Zeno, as well as a variable with
polynomial behavior, harmonic functions (sin and cos) and exponential functions.
Piecewise constant or linear or harmonic variables are non-Zeno. Sum, difference
and product of two non-Zeno variables are non-Zeno; the division is non-Zeno if
the denominator is always different from zero. Variables with constant or bound
derivatives (as in [Manna and Sipma 1998]) are non Zeno.

2In extreme summary, an analytic function is very regular: it can be expanded in a power series,
for example a Taylor series. See [Courant and Fritz 1974] for a deeper insight.
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Not all the variables, however, are non-Zeno. Instances of Zeno variable (ex-
pressed as functions of time) are: 1 (function 2 in Figure 4), (int) (function 3),
sint -t (function 1, continuous but Zeno).

Next we provide some more rationale for definition 9. We argued that the def-
inition 8 would be too strong if applied to uncountable domains, as it would rule
out acceptable behaviors. On the other hand, the weaker requirement of simple
continuity would not be sufficiently accurate: requiring only continuity would not
allow us to freely use variables in expressions, without running into Zeno predicates,
as defined in Definition 4. Consider for example a time dependent variable v equal
to the function sin% -t in a left interval of the origin. This function is pictured in
the figure 4(1) and it is continuous. Nonetheless the formula v = 0 is Zeno because
near the origin there is an accumulation point of isolated zeros. Indeed neither the
formula UpToNow(xz = 0) holds at the origin, nor UpT'oNow(z # 0); the variable
takes and leaves infinitely often the 0 value.

In the same way, even if a function is in C,, it could be Zeno. Another classic
example is the function sm% et s very regular, even Co, (but not analytic)
and indeed it does not satisfy our intuitive requirements for non-Zenoness, because
it changes sign an infinite number of times in every interval surrounding the origin.

The following theorem shows that only non-Zeno formulas are obtained compar-

ing non-Zeno variables with constant values.

THEOREM 1. if the TD variable v in the domain D is non-Zeno, then forall a
in D the formula v = a is non-Zeno.

PRrROOF. The graph of an analytic function cannot have infinitely many intersec-
tions with a line y = constant (or any straight line) in a finite interval [Courant
and Fritz 1974]. O

Therefore piecewise analytic variables correctly exclude undesired behaviors, allow
their use without the risk of introducing Zeno entities, and moreover, they com-
prehend variables, such as sinusoids or ramps or other similar ones, often used to
model real word quantities.

Example 3. In the GRC problem an example of non-Zeno time dependent variable
in a uncountable domain is the angle of the bar, gateAngle with domain the interval
of real numbers between 0 and 90. &

2.9 Non-Zeno point and interval variable

The following two propositions, whose proof is reported in [Gargantini and Morzenti
1999], combine the definition of non-Zeno and of point and interval variables, in
order to obtain definitions of behaviors of practical interest.

PROPOSITION 1. non-Zeno point variable: a TD wvariable x in a domain D
18 a non-Zeno point variable with default value d € D iff:

UpToNow(z = d) A NowOn(z = d)

Non-Zeno point based variables with default value 0 can model non-Zeno events
with simultaneous occurrences (as mentioned in 2.7.1).
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Example 4. In the GRC case study consider the event “a train enters region R”.
As there are several tracks, more than one train can enter the region R at the same
time. Therefore we have to model possibly simultaneous occurrences of this event or
equivalently the event “N trains enter now region R”. Furthermore the number of
trains that might enter the region R in a finite time interval is bound by the number
of tracks. We can use the non-Zeno point integer variable RI with default value 0
to model this event. RI is always equal to 0 except in single time instants when
one or more trains enter R. At these instants RI is equal to the number of trains
entering R. In the same way we introduce the following point integer variables with
default value 0: II models the trains now entering region I, IO those now exiting
region I (and therefore region R as well). O

PROPOSITION 2. non-Zeno interval variable: a TD variable x in a domain
D is a non-Zeno interval variable iff it is piecewise constant:

Jdae D3Ibe D (UpToNow(xz = a) A NowOn(x =b)A(z =aVz =0>))

that means z is piecewise constant and, at time points when it changes, it either
keeps the previous value (the value before the change) or it assumes the new value
(the value after the change).

Since a non-Zeno interval variable is piecewise constant, expressions like “the
value of z immediately before (after) the current instant” are always well defined.
Therefore we can introduce in TRIO two operators uptonow(z) and nowon(z),
denoting the value of z immediately before and after the current time instant.

PROPOSITION 3. non-Zeno left (right) continuous interval variable: a
TD wvariable x in a domain D is a non-Zeno and left (right) continuous interval
variable iff:

Jda € D3be D (UpToNow(x = a) A NowOn(x =b) Nz = a)
(J3a € D3be D (UpToNow(x = a) A NowOn(z = b) ANz = b))

Example 5. In the GRC case study an example of non-Zeno left continuous inter-
val variable is the state of the bar. To represent the state of the bar we introduce
a non-Zeno left continuous variable gate with domain { open, closed, movingDown,
movingUp}. &

Ezample 6. Another example of interval variables are the event counters #RI,
#1I and #I0 respectively for the events RI, II, and IO. They count the total
number of trains entered or exited from the regions of interest. For instance, #RI
is equal to the total number of trains that have entered region R till now. O

2.10 Closure properties of variables

As seen for formulas, we are interested in closure properties of the various kinds of
variables. The comparison between variables of the same type (application of the
relational operators =,#,<,<,>,>) gives as result a formula of the same type;
thus, for example, the comparison between two point-based variables is an event.
Concerning numeric variables, the set of point-based variables and left- and right-
continuous interval variables are closed with respect to arithmetic operations (+, -,
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point-based predicate E E — (UpToNow(—E) AN NowOn(=E))

point-based variable v dd € Dv # d—(UpToNow(v = d) A NowOn(v = d))

I— (UpToNow(I)V NowOn(I))

int l-based predicate 1
pniervatbased preducare —I = (UpToNow(=I)V NowOn(-I))

wnterval-based variable v Va € Dv =a —(UpToNow(v = a)V NowOn(v = a))
left continuous interval pred. I (I - UpToNow(I)) A (—I — UpToNow(—I))
left continuous interval var. v VYa € D v=a — UpToNow(v =a)

UpToNow(—=A) V UpToNow(A)

-7 ; A
non-Zeno predicate NowOn(=A4) vV NowOn(A)

f€AF,Ng € AF,N
non-Zeno variable v 3f3g 2dvt 0 < tA 5 futr(v,t) = f(E)A
t<d past(v,t) = g(t)
non-Zeno point predicate E UpToNow(—E) A NowOn(—E)
non-Zeno point variable v 3d € D UpToNow(v = d) A NowOn(v = d)
UpToNow(I) A NowOn(I) AI v
) . UpToNow(—I) A NowOn(—I) A—I
-Z terval predicate I
non-Zeno interval predicate UpToNow(=~I) A NowOn(I) x
UpToNow(I) A NowOn(—I
. . Ja € DA [ UpToNow(v =a)A(v=aV v =0>)
A
non-Zeno interval variable v beD ( A NowOn(v = b)
) . UpToNow(A) AN A ) < NowOn(A) >
non-Zeno left continuous in- <
terval predicate A UpToNow(—A) A —A NowOn(—A)

non-Zeno left continuous in- Ja€e DIbe D (

UpToNow(v=a)ANv=a >
terval variable v

ANowOn(v = b)

Table 4. All the definitions

* and / - excluding division by 0) whereas this is not the case for generic interval
variables. ?

These properties, together with those seen in Section 2.6, make it more convenient
to use only a particular kind of continuity. Using consistently one of the two
conventions (left- or right- continuous) the specification and its analysis are greatly
simplified; therefore in the following, unless otherwise explicitly stated, we will
assume that in our specifications interval predicates and variables are non-Zeno
and left-continuous (right-continuous would be equally acceptable). See Section 5
for a brief comparison with other languages.

2.11 Conclusive remarks

Table 4 4 summarizes the definitions of the most relevant types of entities intro-
duced in the present section. We have so far introduced the notion of point-based
and interval based predicates, formulas, and variables, and we stated and proved
some interesting properties. We expect that these notions would be useful in mod-

3These facts were proven in PVS as JUDGMENT about the types that in the PVS system represent
the various kind of entities. For instance:

JUDGEMENT + HAS_TYPE [PEnt[real] ,PEnt[real] -> PEnt[reall]

expresses the fact that the sum of two point-based variables is point-based.
4In Table 4 v is a TD variable with domain D
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eling components of real-world systems, but their use is not intended to be manda-
tory. In general, during System Requirement Analysis an engineer would be free to
introduce any predicate or variable, together with suitable axioms describing rele-
vant properties: only non-Zenoness is expected to be a truly general and necessary
assumption. One of the purposes of the present work is to encourage engineers
performing SRA to identify from the very beginning some typical patterns of be-
havior, and to model them in terms of suitable predefined entities. This allows the
engineer to take for granted a set of properties, to use them for further analysis
and proofs of more elaborate properties, and to easily perform simple but quite
effective checks of correctness, completeness, and consistency, uncovering as early
as possible errors in the model.

3. TEMPORAL AND CAUSAL RELATIONS AMONG ENTITIES

In the previous section we focused our attention on various types of temporal en-
tities; now we introduce constructs to relate the system entities with each other.
In TRIO, as well as in any descriptive formal notation, these relations could be
modeled by means of suitable axioms, defined ad hoc for each single system to
be modeled and analyzed. Even though ad hoc axioms can always be employed
to express any kind of relation among entities, in the same spirit as in Section 1,
we introduce here some general, high level and intuitively appealing constructs to
model a few typical, very frequent types of relation. After a very brief explanation
of our model, in Section 3.2 we introduce a direct way to define new derived entities
from other previously defined ones. In Section 3.3 we introduce a method to model
the change of interval variables as caused by events, thus formalizing a cause-effect
relation between events and interval variables. In Section 3.4 we introduce periodic
events. In the last subsection we discuss means to model cause- effect relations
between events.

3.1 Model - Derived entities

As we briefly recalled in the introduction, a critical system may abstractly be viewed
as composed of a computerized device (the Device Under Construction, DUC) that
interacts with its environment, which it is in charge of monitoring or controlling,
through an interface consisting of a set of sensors and actuators. This view is
consistent with several models proposed in the literature, see for instance Parnas’
Four Variables model [Parnas and Madey 1995] and Jackson & Zave’s model [Zave
and Jackson 1997].

Quite often the duty of the DUC may be described as computing the value of
its output to actuators starting from the inputs produced by the sensors, therefore
its specification should describe clearly and unambiguously the desired relation
between input and output. To facilitate the definition of this relation, designers
often find it useful to introduce new, derived “internal” entities, that do not directly
correspond to real-world elements of the environment, but are computed from the
input and typically account for the current state of the computation in an explicit
and human-understandable way.

In the following subsections we will introduce constructs useful for defining de-
rived entities and relations among them.
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3.2 Directly Defined Entities

The simplest way to introduce derived entities is just to define them as directly
corresponding to other system entities. For example an event £ might be introduced
by defining an axiom like:

E < FEventFormula

where F is the name of the event and FventFormula is a TRIO formula that
has point behavior by construction (see Section 2.6 and Tables 2 and 3 for rules
providing sufficient conditions to check whether a formula is an event). A definition
of that type introduces a necessary and sufficient condition for FE.

In the same way as for predicates, designers can define new variables, by simply
introducing new axioms similar to the following one, used to derive the variable z.

T = expression

When the designer uses a definition of this type, he or she must check that z and
expression are of the same type, using the definition of the supposed type (given
in Table 4) or directly the rules given in Section 2.10. In the tool that we have
built the constraint about ezpression is automatically generated (as TCC: Type
Correctness Condition) and the user is in charge of proving it, possibly with the
assistance of the tool itself.

Ezample 7. In our case study we define these two events:

stopM ovingUp + Becomes(gate Angle = 90)
stopMovingDown <« Becomes(gateAngle = 0)

stopMovingUp occurs when the gate reaches the open position, i.e. when its angle
becomes equal to 90 degrees. The other event, stopMovingDown, occurs when the
gate reaches the closed position, i.e. its angle becomes equal to 0. In reference to
the equation (1) (page 2) these two definitions are considered as part of the bar
actuator model.

We define also the following “internal” variables:

CTI = #II—#I0
CTPI = past(#RI,dy,) — #I0
CTPI, = past(#RI,dp, —v) — #I0

CTI is the number of trains currently in region I. CT'PI is the maximum number of
trains that can possibly be in region I given the inputs RI and 10 from the sensors
up to the present time: the length of time d,, in the past operators is derived from
the pessimistic assumption of maximum speed of trains moving from region R to
region I. C'T'PI, includes a forward shift +, taking into account the time it takes
the bar to reach the down position starting from the open posture: CT PI, models
the number of trains that can possibly be in I within 7 time units.

In our example we define directly also the outputs of the controller. down is the
event that models the command to lower the bar. In our model it is issued as soon
as the number of trains that can possibly be in region I within ~+ time units, i.
e. CTPI,, becomes greater than 0. The other command, up, which models the
controlled command to raise the bar, is issued as soon as CTPI, becomes equal
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to or less than 0. In summary, the chosen policy of issuing bar commands can be
specified by the following direct definitions.

down < Becomes(CTPI, > 0)
up > Becomes(CTPI, <0)

In reference to the equation (1) CTI, CTPI, CTPI, and definitions for down and
up are considered as part of the controller specification, i.e. parts introduced by
the designer to model the device under construction and its behavior.

The angle of the bar, which belongs to the actuator model, is modeled as follows:

( gate = closed : 0
gate = open : 90
gate = movingDown
LastTime(Becomes(gate = movingDown),t) —
gateAngle = ( (past(gateAngle, t) —)spied -t
gate = movingUp
LastTime(Becomes(gate = movingUp),t) —
| past(gate Angle, t) + speed - t

If the bar is closed (open) the value of the angle is equal to 0 (90). If the bar is
closing (i.e. moving down), the angle is decreasing and equal to the value it had
when it started closing (¢ time units ago) minus the value of speed - t, where speed
is equal to 90/v. The case when the bar is moving up is treated symmetrically in
the last clause above. &

3.3 Interval variables changed by events

Very commonly in a specification interval variables change when some event occurs.
For example in the GRC case study the variable gate changes its value from open
to movingDown when the command down (which is in fact modeled by an event) is
issued. The other transitions of the variable gate can be modeled in a similar way.

Using events to trigger a value change of an interval variable is a solution adopted
in many formal notations, see for instance [Heitmeyer et al. 1996].

A very general and compact way to formalize this kind of behavior is by intro-
ducing the following relation.

Definition 10. Change_relation: for an interval variable x with domain D,
given a set of events E®, we define a relation over D x E x D and we call it
change_relation,

For example for the interval variable gate we define its change_relationgq:. and call
it gate_behavior as a relation among D x E x D where D = {open, movingUp,
movingDown, closed} and E = {up, down}. The fact that gate changes from
open to movingDown when down occurs, is formalized by the triple (open, down,
movingDown) belonging to the relation gate_behavior.

51t is assumed that in practice the relation will be defined on a subset of all the events defined in
the system, i.e., on the set of events that are relevant to the variable. However, since the relation
admits tuples of the form change_relation(z,e,z) one could comprise in E all the events, including
those that have no influence on the variable.
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The intended meaning of the change relation is informally described by the fol-
lowing clauses. The first one considers the simplest case in which the variable does
not change:

(1) for every value x € D, if there is no e € FE and no y € D such that change_rela-
tiong(x, e,y), then the occurrence of event e when the value of the variable is
z does not affect it;

In all other cases the variable changes its value, possibly in a non deterministic
fashion:

(2) if change_relation,(x, ey, y) and change_relation,(z,es, z) , then, when e; and
e, occur simultaneously, the variable may nondeterministically turn from z into
y or z;

Point 2 includes these particular cases: if e; = e (for brevity = e), and e occurs,
then the variable can change either into y or z; if y is equal to z, then the variable
can either change to z or keep its value z.

We can formally express this behavior of a variable z, by the following two TRIO
axioms. Clause 1 above (describing the case when the variable keeps its value) is
formalized by Axiom 1:

AxioM 1. continue
UpToNow(z = old) A —3e, new(change_relation,(old, e, new) A e)
— NowOn(z = old)

The clause 2 (describing the cases when the variable z may change its value) is
formalized by Axiom 2:

AxioM 2. change
UpToNow(x = old) A Jeq, new, (change_relation, (old, e1,new) A ey)
— dea, news (change_relation,(old, ea, news) A ea A NowOn(xz = news))

In Axiom 2 the event e; and the value new; in the antecedent of the implication
can be different from those ( e2, news, ) in the consequent: the double existential
quantification formalizes the possibility of non determinism.

Notice that the two axioms are consistent (i.e. not contradictory) and com-
plete. They are consistent because at any time exactly one of the two has the
antecedent of the implication satisfied and therefore only one of them determines
the value of s in the future (from now on). They are complete, because one of two
antecedents is certainly true, as there is always one and only one old value that
satisfies UpToNow(s=old) and one of the second conjuncts of the two conjunctions
that constitute the premises is true.

To be more precisely, the two axioms are meta-axioms, since they refer to a
generic variable  and its change_relation,. When the designer defines the change_re-
lation, for a variable z, he or she should derive the actual TRIO axioms substituting
both z and change_relation,. Exploiting the higher order language of PVS we de-
fine the axioms for a generic variable and generic relation (as parameters of the PVS
theory where generic axioms are defined) and the actual axioms are automatically
derived by PVS.
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Using tables. The use of tables in specifications is known to provide great ben-
efits, and tables are particularly suitable to specify relations [Parnas 1992]. Some
notations intensively use tables, since tables offer a concise and clear way to specify
software and system requirements. SCR [Heitmeyer et al. 1996] is based on a tab-
ular notation and offers a method to check interesting (and system independent)
properties of tables (and then properties of the specification and of the system). In
cases where for every value and every event there exists a finite number of possible
new value, tables are a very intuitive means to specify the above described relation,
as shown by the following example.

Example 8. In our case study, the relation gate_behavior can be specified by the
following, quite simple and self-explanatory table.

| UpToNow | event | NowOn |
closed up movingUp
moving Up down movingDown
movingUp stopMovingUp A = down | open
movingDown | up moving Up
movingDown | stopMovingDown A = up | closed
open down movingDown

Note that, with reference to the equation (1), this table is part of the bar actuator
model. ¢

Determinism. As previously noticed, the change relation may or may not de-
scribe a deterministic change. Deterministic behavior is quite frequent, especially
in the design specification of a computerized device, whereas nondeterminism is a
frequent feature of the environment. Here we determine the necessary and sufficient
conditions on change_relation characterizing a deterministic behavior:

Definition 11. Deterministic relation: a change_relation for an interval vari-
able describes a deterministic behavior iff for every value old, ny, ny in the domain
D, and for every event e; and es:

change_relation(old, e1,n1) A change_relation(old, ez, n2) —
Alw (—(e1 Aez)) Vng =mny

Note 3. It can be easily verified that a change relation is deterministic if and
only if both the following properties hold:

1. mext state uniqueness (if an event e can change the variable value, the next
value is unique):

change _relation(old, e,ny) A change_relation(old,e,ny) — nq = na

2. event disjointness (if two different events change in a different way the variable
value, they never simultaneously occur):

change_relation(old, e1,n1) A change_relation(old, es, n2)A\
e1 # ey Ang # na = Alw(—(e1 Nea))
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Definition 11 gives the designer a simple criterion to check whether the specifi-
cation is deterministic or not. In the particular case of a deterministic relation, the
axiom of change is simplified as follows:

PropPOSITION 4. Change for a deterministic change_relation: for a deter-
ministic relation axiom 2 (change) is equivalent to the formula:

UpToNow(x = old) A change_relation,(old, e,new) A e = NowOn(x = new)

while the first axiom (continue) remains unchanged. Proposition 4 has been proved
with the TRIO prover based on PVS.

Note 4. Non-Zenoness. Variables whose value is ruled by a change_relation on a
non-Zeno event set are non-Zeno®.

Example 9. The relation given for the bar has been verified to be deterministic.

%

Note 5. Initial values. The relation change_relation specifies only the way inter-
val variables change, not their value at any given (possibly initial) time. These kind
of values should somehow be explicitly provided by the designer.

Counters. The first application of the proposed construct is the definition of
event counters. These are integer variables that count the number of occurrences
of a given event. They have a very simple temporal behavior, in that they are
normally stable unless the counted event occurs, in which case they increment their
value.

The behavior of an event counter is described by the change_relation displayed
in the table below:

| UpToNow | event | NowOn |
| n | E | ntl |
For a counter of an event admitting multiple simultaneous occurrences, the table
becomes (with i > 0):

| UpToNow | event | NowOn |
| n | E=i | n+i |

Note 6. First event occurrence and initial value of counters. The relation given
in the table models only the change of the counter and not its absolute value. If
the number of occurrences is infinite in the past and in the future, the counter will
be an integer number and the designer should fix its a value at some time (just like
for other interval variables whose behavior is ruled by change_relation).

In the more realistic but less general hypothesis that there is a first occurrence
of an event, i.e. that the formula Som(AlwP(—FE)) holds, the initial value of the
counter can be fixed as 0, and the counter assumes the meaning of total number of
event occurrences. This hypothesis is often appropriate, because in every practical
computer-based system there is a “start of operation” before which no significant
event occurs. This is in fact the definition of counters adopted in our GRC case
study and in the PVS encoding.

SInformally, a set of events is non-Zeno if there is no accumulation point of occurrences of events
in the set. For a formal definition see [Gargantini and Morzenti 1999].
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3.4 Periodic Events

Periodic events have occurrences that are repeated at regular time intervals. Next
we list definitions for periodic events and some properties which were proved with
the assistance of PVS.

Definition 12. Semi-periodic Event A is a periodic event in the future, with
period d iff

A — NextTime(A,d)
Starting from this definition we are able to derive the following propositions:

(1) A is actually an event

(2) LastTime(A,d) — A : A is periodic in the future

(3) A — (LastTime(A,d)V AlwP(—A)): A repeats itself in the past unless it never
occurred before.

(4) A — VEFutr(A,k-d) : A repeats itself every d time units in the future
However, for semi-periodic events Som(A) cannot be proven, i.e., it is not guar-
anteed that the event occurs sometime. For this reason we call it semi periodic.

If we add the condition Lasted(—A,d) — A, we obtain the following definition of
periodic events.

Definition 13. Periodic Event: An event A is called periodic with the period d
A« Lasted(—A,d)

For periodic events we prove the following propositions:

(1) A - Lasts(-A,d), A — Futr(A,d), and A — NexztTime(A,d) : A is semi
periodic in the future

(2) Som(A) : A sometime occurs

(3) A — Lasted( —A,d), A — Past(A,d), and A — LastTime(A,d): Ais periodic
in the past

(4) A — VkDist(A,k-d): A repeats itself every d time units in the future and in
the past

3.5 Temporal relationships between events.

The simplest and most common relationship between events is cause-effect. To
formalize the simple fact that an event B occurs exactly d time units after another
event A that constitutes its cause the following axiom suffices.

A — Futr(B,d)

If event A is the unique cause of event B then the implication holds in both
directions, leading to the following formalization.”

A« Futr(B,d)
"Since, as previously recalled, all axioms are intended as prefixed by an external Alw operator,

the formula A < Futr(B,d) is equivalent to the following, perhaps more intuitive one: (A —
Futr(B,d)) A (B — Past(A,d)).
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Notice that the above cases of cause-effect relation are deterministic as, once the
cause (event A) occurs, then the occurrence time of the effect (event B) is precisely
determined.

A more general and common relationship between two events is the one in which
an event A causes another event B, in a future time that is not known precisely, due
to some nondeterminism of the system. Typically, the delay between A and B is
characterized by means of a lower bound and an upper bound denoting the minimal
and maximal time distance between related occurrences of the two events. The
relation is therefore nondeterministic, being the exact instant in the future, when
B will occur after A, unknown. We model here the more common and interesting
case where the relation is one-to-one (for instance because A is the unique cause
of B: every occurrence of A causes one B and every occurrence of B is caused by
one occurrence of A). An example of this kind in a concurrent systems could be the
relation between the event of taking a resource and that of returning it.

We provide a preliminary formal definition of this kind of relation as follows.

Definition 14. An event A is a unique cause for an event B in [d,D] time units,
where d and D are positive real constants such that d < D, iff there exists a one-
to-one function ¢ from the occurrence times of A to those of B such that t + d <
#(t) <t+D.

This relationship is widely used and in several formalisms it is the only temporal
relationship between events: see for instance timed Automata in [Archer and Heit-
meyer 1996; Merritt et al. 1991] and Time Petri Nets (TPN) in [Merlin and Farber
1976]. In TPN it is pictured as follows.

O

Next we formulate this definition in terms of TRIO axioms that refer to event

and event counters. We will discuss two solutions, one introducing an additional

predicate, and one based on counters; their equivalence is proved in [Gargantini

and Morzenti 1999] by showing that they both model the relation introduced in
Definition 14.

Notice that simple, apparently obvious formalizations are easily proved incorrect.

For instance, in [Gargantini and Morzenti 1999] we show that the following pair of
axioms

[d.D]

A — 3t(d <t < D A Futr(B,t)) and B — 3t(d <t < DAPast(A,t))
do not capture the one-to-one binding between occurrences of A and B3.

Using special predicates to formalize the relationship. Proposed solutions can be
found in [Felder et al. 1994] and in [Mandrioli et al. 1996]. In [Felder et al. 1994] the
authors use special predicates to introduce the causal relationship between a firing
of a transition and the firing of another transition in TPN. The same approach can

8We are assuming here that event occurrences cannot be uniquely identified; otherwise axioma-
tizations like the one above, with the addition to the event predicate of an argument identifying
event occurrences, could suffice [Koymans 1989].
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be exemplified for two generic events A and B as follows. We introduce a TRIO
time dependent predicate ACausesB(t), that, when true at a given time, means
that A occurs at that time and causes an occurrence of B ¢ time units later (with
t > 0). The following axioms characterize predicate ACausesB.

1 occurrences ACausesB(t) - A A Futr(B,t)

2  cause A =3t (d <t <D A ACausesB(t))

3 effect B —3t (d <t <D A Past(ACausesB(t),t))
4  cause uniqueness ACausesB(t1) A ACausesB(ta) — t1=ty

5 effect uniqueness Past(ACausesB(t1),t1) A

Past(ACausesB(ta),t2) — t1 = ta
It is immediate to prove that this formalization allows one to introduce a one-to-

one function ¢ between the occurrences of A at time ¢ to those of B at time ¢(t)
such that ¢t + d < ¢(t) <t + D (see [Gargantini and Morzenti 1999]).

Using counters. We now introduce a way to bind events A and B through a simple
formula of the counters of their occurrences, respectively denoted as #A and #B.
In the derivation of this formula [Gargantini and Morzenti 1999] we assumed that,
for any event F, there exists a first occurrence, i.e., that there is an instant before
which E never occurred, a fact that is formalized in TRIO as Som(AlwP(-E)).
As noted above, this hypothesis is quite realistic for real-world systems. A less
restrictive assumption is however adopted in the proof of the theorem 2, reported in
[Gargantini and Morzenti 1999], showing that it is immaterial from a mathematical
viewpoint.

THEOREM 2. Ewvent A is a unique cause of event B in [d,D] time iff:
past(#A,D) < #B < past(#A,d)

Intuitively, if the relation of Definition 14 holds, when an event A occurs, causing an
increment in counter # A, then counter # B is also bound to increase; however, due
to the assumed delay ranging between d and D, counter # B will increase no earlier
than d time units after the increase of # A, hence the inequality # B < past(#A,d)
holds; moreover, and symmetrically, # B will increase no later than D time units
after #A, hence #B > past(#A,D) holds.

Theorem 2 expresses the concept stated in Definition 14 with very simple re-
lations between event counters. Thanks to their simplicity (they are just linear
inequalities) these relations can be very easily and effectively used in the derivation
of relevant properties. Furthermore, specifications based on counters are readily
implementable, since counters are trivially computable by means of increments of
integer-valued program variables.

Particular cases and generalizations. The model can be both generalized and
applied to particular cases. For instance, if the minimum delay d is zero (event B
can follow immediately event A) the relation becomes: past(#A, D) < #B < #A.

If the delay has no upper bound, then D = oc and the relation reduces to:
#B < past(#A,d).

Definition 14, introduced for simple events, can be extended to events with mul-
tiple simultaneous occurrences. Theorem 2 maintains its validity also in this gen-
eralized framework.
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A further, interesting generalization of the one-to-one relation introduced in Def-
inition 14 is to allow a negative minimum time d. In this most general case one
would not model a “cause-effect” relation, but a correspondence between event oc-
currences that are somehow related, for instance because they are both effect of a
common (unique) cause. Theorem 2 can be generalized in a straightforward way to
this case by just changing the past operators (which assume a positive time argu-
ment and necessarily refer to previous instants) into dist operators (which equally
admit a positive, null, or negative time argument, thus referring to both past,
present and future), obtaining the following relation

dist(#B,d) < #A < dist(#B, D)

which holds under the unique assumption that d < D.

Similarly, the special predicate previously called ACausesB(t) can be generalized
to AoneTooneB(t), where the argument ¢ could be negative, and the related axioms
adapted by changing the Past and Futr operators to Dist.

1 occurrences AoneTooneB(t) — A N Dist(B,t)

2 relation one way A =3t (d<t< D A AoneTooneB(t))

3 relation the other way B =3t (d <t < D A Dist(AoneTooneB(t),t))
4 uniqueness one way AoneTooneB(t1) N AoneTooneB(ty) — t =ty
5 uniqueness the other way  Dist(AoneTooneB(t1),t1) A

Dist(AoneTooneB(t2),t2) — t1 =to

As a concrete example, let us consider an electronic trading system where an
order for some goods performed by a client gives rise subsequently, through inde-
pendent chains of actions, to the physical delivery at the client’s address of the
parcel containing the ordered item, and to the billing of the price on the client’s
bank account. An important property of the trading system could be that there is a
one-to-one matching between goods delivery and bank account transactions. These
two events are clearly related, but there might be no strict temporal precedence
between them. If we model goods delivery by the event predicate GD and bank
account transactions by event predicate BAT, then we can abstractly specify that
each occurrence of GD may at most precede the corresponding occurrence of BAT
by 3 days, or at most follow it by 4 days, using the following inequalities

dist(#GD,—3) < #BAT < dist(#GD, 4)

Example 10. In the GRC case study a one-to-one temporal relationship obviously
exists between the entering of trains in the various regions surrounding the crossing.
The system is nondeterministic due to the uncertainty about the trains speed, which
may vary between minimum and maximum allowed values.

The informal specification asserts that the trains take a minimum time d,,, and a
maximum time djs to go from the beginning of region R to the beginning of region
I; it takes a minimum time h,, and a maximum time hjys to go from the beginning
of region I to its end.

These relations are formalized by the following inequalities between counters of
event occurrences (recall that RI, II, and IO are defined, respectively, as the events
of trains entering region R, entering region I, and exiting region I, and that they
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Fig. 5. Models for axiomatizations based on special predicates or on counters.

are multiple events).

past(#RI, dy) < #I11 < past(#RI,d,,)
past(#I11,hy) < #I0 < past(#11,hp,)

Notice that, with reference to the equation (1), this relation belongs to the model
for the environment. Indeed the trains speed is a constraint about the environment
where our controller will operate. O

Azxiom alphabet and models. The two proposed axiomatizations of cause-effect re-
lation between events, in terms of predicates (like ACausesB) or counters of event
occurrences are both suitable to formalize in TRIO a one-to-one relation like that
of Definition 14, but they are not completely equivalent for what concerns the in-
formation content of the resulting models. A model for an axiomatization based on
a predicate like ACausesB contains, as interpretation of that predicate, a relation
whose tuples establish the exact mapping between the various occurrences of the
cause and effect events. On the contrary, a model for an axiomatization expressed
in terms of counters of event occurrences defines just the values of the counters
as events occur in time, without providing any information about the matching
between event occurrences. Of course, the simpler but slightly less informative de-
scription in terms of counters suffices in the cases where the exact matching between
the event occurrences is immaterial with respect to the desired system properties.
In other cases, where the exact matching between event occurrences really matters,
the slightly more complex but also more accurate description provided by predicates
like ACausesB may be preferable.

As an illustration of this, consider again the GRC example, with a plant where
d,, =5 and dp; =15. Suppose there are two occurrences of RI at times 0 and 3
(i.e., a train enters region R at time 0 and a second train enters at time 3), and two
occurrences of event IT at times 9 and 14 (i.e., a train enters region I at time 9 and
another one at time 14). From a physical viewpoint there are two interpretations
of this event sequences: either the trains enter in region I in the same order as they
entered in region R, or the train that entered region R last passes the first one,
and enters region I before it. Correspondingly, there are two models for predicate
RICauseslI including these event occurrences, as shown in Figure 5: in each model
the relation shows which event of the kind “entrance in region I” corresponds to
each event of the kind “entrance in region R”.

When we use event counters, instead, we model the fact that “sensors do not
recognize trains”, so that there is just one possible model, shown in Figure 5,
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Fig. 6. BAT and GD

accounting for the total number, up to any given time, of event occurrences of
kind “entrance in region R” and “entrance in region I”. Notice, however, that the
second, less precise description is perfectly adequate to the purpose of governing
the Railway Crossing: the safety system does not need to “recognize trains”: it can
limit itself to counting them.

As an example where the exact matching between event occurrences can be rele-
vant to the desired system properties, consider again the above described electronic
trading system, with a sample “history”, shown in Figure 6, where two bank ac-
count transactions take place at time 0 and 5, and goods delivery occur at time 2
and 4. Figure 6 shows that there is only one model based on counters #GD and
#BAT, and there are two models based on the predicate BAToneTooneGD.

(Notice that the specification of the electronic trading system can be further
enriched by associating to every goods delivery and bank account transaction the
description of the acquired item; in this case it can be easily verified that the number
of candidate models increases, and a few additional simple axioms are needed to
state the property that related BAT and GD occurrences must refer to the same
acquired item.)

4. ENCODING TRIO IN PVS - TOOL AND PROOFS

Our tool has three components: a set of theories, containing the necessary defini-
tions to encode in PVS the TRIO variables, operators, and high-level entities; a
pretty printer to support a TRIO-based style in formulas and derivations; a set of
strategies to simplify the reasoning with the given definitions and with time.

4.1 Definition of time

Since our method applies to asynchronous hybrid systems we chose to model time
in PVS simply as a real value:

time : TYPE = real

According to the conventions adopted in TRIO, in our encoding the measure of
time is supposed to be relative to the current instant: for instance, “time 0” means
“now”, “time 5” means “ § time units in the future”. This relative notion of time
is however not appropriate to represent duration of time intervals, for which an ad
hoc definition is provided as follows.
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duration : TYPE = {t:time | t>=0}

4.2 Semantic vs. syntactic encodings

The problem of encoding TRIO in PVS is in fact a particular case of the most
general problem of encoding a logic (called source) into another logic (called base).
Proposed solutions to this problem can be classified in a framework based on two
categories: syntactic encoding and semantic encoding.

In syntactic encodings the source logic is directly encoded in the base logic by
means of a metalanguage, provided by the base logic. This metalanguage is used to
represent both grammar and inference rules of the source logic. For many systems,
for example Isabelle [Paulson 1994], this is the suggested way to encode another
logic. Such systems are very versatile and capable, because almost every logic can
be encoded with its own syntax and inference rules, nevertheless they provide only
a few predefined theories and no powerful decision procedures, because every source
logic is supposed to introduce its own inference rules. For example they generally
lack decision procedures for arithmetic, which are essential in TRIO because of its
quantitative treatment of time.

In semantic encodings the semantics of each construct of the source logic is de-
fined using the constructs of the base logic and the base logic’s inference rules are
used in proofs. The base logic normally has a rich language and type system, and
a powerful proof support. The main disadvantage of this approach is that the
encoded formulas and proofs may look very different from the original ones. To
overcome this disadvantage, semantic encodings are typically paired with a pretty-
printer that supports visualization of the encoded formulas in a syntax similar or
identical to the original one. On the other hand, the major advantage of semantic
encodings is that all the constructs and proof techniques of the base logic, which
are often quite powerful and sophisticated, can be exploited. PVS, as an exam-
ple among many, better supports semantic encodings (even though, using ADT
and introducing AXIOMS, syntactic encodings are still possible). Furthermore it
includes decision procedures over arithmetic and propositional logic, and a power-
ful theorem prover. The semantic approach (with a dedicated pretty printer) was
adopted for Duration Calculus in [Skakkebaek and Shankar 1994] and in [Dutertre
and Stavridou 1997]. Further references can be found in Section 5 and in the web
page of PVS (http://pvs.csl.sri.com).

Some approaches try to combine the most valuable features of syntactic and se-
mantic encodings: among these we mention TAME for Timed Automata [Archer
and Heitmeyer 1997a]; in a previous, preliminary work [Alborghetti et al. 1997], we
adopted a so-called suppressed state encoding, where we considered TRIO formulas
as an uninterpreted type (a feature typical of syntactic encodings) and, to provide
the usual interpretation of TRIO formulas, we introduced a function now from the
type of TRIO formulas to the booleans, and equipped the system with axioms char-
acterizing the now function. This allowed us to avoid the overhead of constructing
the pretty-printer for TRIO, at the price, however, of additional complexity and in-
efficiency in deductions. In the work described here, we chose a semantic encoding
coupled with a pretty-printer, which allows us to obtain a maximum of efficiency
in derivation and a satisfying visualization of TRIO formulas.
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Definition of time dependent terms. Every time dependent term with values in
a domain D is encoded as a function from time to D. This is implemented in PVS
through a parametric theory:

trio_TD_Terms [D : TYPE+°] : THEORY
BEGIN

TD_Term : TYPE = [time —-> D]

The domain D can be, for example, the integer set (in this case we encode time
dependent integer variables) or a more complex type, such as a tuple, a record, or
an abstract data-type or a function (then we have a time dependent tuple, a time
dependent record, etc.). Considering time dependent entities as functions from
time to their domain is a rather standard approach [Dutertre and Stavridou 1997;
Skakkebak and Shankar 1994]. As noted in [Hansen et al. 1998], the same approach
is followed by conventional dynamic systems theory [Luenberger 1979], and such
model is known to engineers in general, often through its graphical representation
by timing diagram.

We define the operator LV (lift value) that translates a value k in D into a time
dependent variable (with constant value k):

LV(k: D) : TD_Term[D] = lambda'® (t:time): k

Since this operator is defined as CONVERSION, PVS automatically applies LV when-
ever it finds a time independent value instead of an expected TD value.

Higher order features of PVS allow us to use unique definitions for predicates
and for variables in any domain. TD predicates and formulas are encoded simply
taking as D the boolean set, as follows:

TD_Fmla : TYPE+ = TD_Term[booll

Domain operators . Operations in usual domains (boolean, numbers,...) can be
extended to time dependent variables in those domains as follows. Consider for
instance the operator AND, defined in PVS:

AND: [bool, bool —> booll]

To extend AND to time dependent boolean terms, we define another operator AND
that has TD bool operands and returns a TD bool:

9TYPE+ means that D must be a non empty type. Although an empty type would be equally
acceptable, empty types are of no practical interest. Furthermore forcing the designer to use
non-empty types, can expose inconsistencies in definitions, as pointed out in [Rushby et al.
1998]
10Tn PVS lambda expressions denote functions. For example the function which adds 3 to an
integer may be written :

LAMBDA (x:int): x+3

and its type is function from integer to integer: [int->int]
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AND(a, b: TD_Term[booll)
TD_Term[bool] = lambda (t: time) : a(t) AND b(t)

Hence the result of the application of AND is still a function from time to the
domain bool, and this function has in every instant the value of the application
of the operator AND between the boolean values of the arguments in that instant.
Similar definitions are provided for other arithmetical and logical operations on
time dependent entities.

Useful closure properties of those operators are proven. For example the fact
that the sum of two TD integers is still a TD integer is automatically stated by
PVS in the following form.

JUDGEMENT + HAS_TYPE [TD_Term[int],TD_Term[int] -> TD_Term[int]]

A JUDGEMENT is a statement that the user is required to prove (possibly with
the support of PVS itself) and is used by PVS during type checking.
We redefine the equality between two TD variables in the domain D:

==(H,K: TD_Term[D]) : TD_Term[bool] = lambda (t: time): H(t) = K(t)

The operator == returns a time dependent boolean that is true only in the time
instants where H and K are equal.

Temporal operators . Besides usual domain operators, TRIO introduces several
temporal operators. The basic temporal operator Dist(A,d) is encoded as a TD
predicate (i.e., a function from time to boolean), equal to a translation of A for d
time units:

Dist(A,d) : TD_Term[bool] = LAMBDA (t:time): A(t+d)

The encoding of all the other TRIO temporal operators is based on that of Dist.
We report the definition of Alw (always) and Som (sometimes), which simply have
as result a boolean!:

Alw(A) : bool
Som(A) : bool

FORALL (t : time) : A(t)
EXISTS (t : time) : A(t)

Other derived temporal operators have as result a TD formula (i.e., a time de-
pendent boolean term). For example, if A and B are TD formulas, then Lastsee (A4,
d) and Until..(A, B) are defined as follows.

Lasts_ee(A,dur): TD_Term[bool] =

FA!''2 (¢t : {t:time | 0 < t AND t < dur}) : Dist(A,t)
Until_ee(A,B) : TD_Term[bool] =

EX! ( pt : duration): Futr(B,pt) AND Lasts_ee(A,pt)

Thanks to these definitions the user can define in PVS TD variables, TRIO
formula, theorems, axioms, etc. with the usual TRIO syntax. For example we
define and prove the following theorem (introduced in [Felder et al. 1994]) :

1Since Alw(A) and Som(A) do not depend on the time they are stated (thanks to the theorems
Alw(A) — Alw(Alw(A)) and Som(A) — Alw(Som(A)) ), we preferred to define them in PVS
simply as boolean.

12Fpt stands for FORALL, and EX! for EXISTS
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Fig. 7. TD types in our encoding.

th_i: theorem
FORALL (A: TD_Fmla, t: time):Alw(Alw(A) IMPLIES Dist(A,t))

Definitions for entities with bound behavior. In addition, we provide in PVS defi-
nitions for point and interval based entities. To simplify and optimize our encoding,
we occasionally deviated from the conceptual path outlined in Section 2. For this
reason the definitions that follow are slightly different from those seen in that sec-
tion. Furthermore, since PVS has no predefined theory supporting the characteri-
zation of analytic functions [Dutertre 1996], and building a complete library would
have been far beyond the scope of the present work, we exploited simple but very
general sufficient conditions (some of which mentioned in Section 2.9), ensuring
that functions encoding non-Zeno variables are analytic.

We group non-Zeno point and interval variables in one type called PIEnt, to
gather common properties of these two types of behavior. PIEnt variables might
behave sometimes as point variables (i.e. keeping a value only for a single time
point), whereas sometimes as interval variables (i.e. piecewise constant). The
relation among types we have defined in PVS, is shown in Figure 7.

The definition for PIEnt in the domain D is the following:

PIEnt : NONEMPTY_TYPE =
{H: TD_Term[D] | Alw(EX! (1,r:D) : UpToNow(H==1) AND NowOn(H==r))}

Then we defined type PEnt for point variables in the domain D (as subtype of
PIEnt), parametric respect its default value qg:

PEnt(q:D) : NONEMPTY_TYPE =
{PI : PIEnt[D] | Alw(UpToNow(PI==q) AND NowOn(PI==q))}

In a similar fashion we defined interval entities (the type IEnt) and left continuous
interval entities 1cIEnt. We report the definition for the latter:

1cIEnt : NONEMPTY_TYPE =
{PI : PIEnt[D] | Alw(FA! (v :D) ( PI==v IMPLIES UpToNow(PI==v)))}

Closure properties and theorems for those types (given in the previous sections)
have been proven in PVS using the tool itself.

Soundness and completeness. Soundness and completeness are of primary impor-
tance for a semantic encoding: the base logic or the encoding may include axioms
and proof rules clashing with those of the source logic, or they may miss important
properties. In our case we have to prove that every PVS rule is logically valid in
TRIO (to prove that the encoding is sound), and all that TRIO axioms (as defined
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in [Felder et al. 1994]) can be proved in our encoding (for completeness). These
proofs are straightforward and reported in [Jeffords 1995].

4.3 Proofs and strategies

We enriched the PVS proving mechanism with a set of strategies that efficiently
deal with time and TRIO temporal entities (time dependent variables, operators,
and other constructs presented in previous sections). We can divide our strategies
in two types: direct extensions of PVS strategies, and new strategies specifically
aimed at dealing with time.

Extension of PVS strategies. A typical generalization consists of applying a rule
at any instant different from the current time. For example PVS propositional rule
F A, on the left below, is generalized to - DistA on the right below!?.

kA TEB T+ Dist(A,t) T F Dist(B,t)

- Dist
rEan " T Dist(AAB, 1) 1A

Then we define new PVS commands in order to apply the generalized rules. For
example PVS command split is generalized to trio-split strategy, that splits
conjunctive formula in the current goal sequent even if they are inside temporal
operators. Our tool of course generalizes all other commands based on propositional
reasoning, including, e.g., case analysis (using case and trio-split strategies).

Time related strategies . Other strategies, explicitly dealing with time and TRIO
entities, are completely original. We have defined a set of strategies to manipulate
sequents containing formulas with temporal operators. Here we show a rule merge +
that is useful to merge temporal intervals.

T, AlwF;(A) F A
T, Dist(AlwF;(A),d), Lasts;c(A,d) F A

This rule and other similar ones are applied by a new strategy, named merge-te-
mp-ops. An instance application of the strategy is illustrated in Figure 8.

merge

Temporal induction. The change relation introduced in Section 3.3 defines the
behavior of interval variables only instant by instant. For an interval variable it

13In PVS inference rules (see pag 15 [Shankar et al. 1998]) are specified in the form
AL TR A,
T'FA

meaning that if our goal is to prove I' F A, we can apply the rule R and obtain n (generally
simpler) goals to prove: I't - Ay ... T F Ap.

R
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specifies the next value according to the current value and the now happening
events. Temporal induction allows us to move from this step-by-step view to a
reasoning on temporal intervals.

Temporal induction can take several forms, depending on whether it is stated in
the future or in the past, over an interval, or for ever. Therefore we introduced
several definitions in our system and here we present as an illustrative example the
one for a left-continuous formula in a future interval:

THEOREM 3. temporal induction: for every left continuous TD formula A
and duration d, if A is true now and, for a future time interval lasting d time
units, A — NowOn(A), then A holds for all that interval.

A A Lasts(A — NowOn(A),d) b Lasts(A, d)
As a simple application, this theorem can be used to prove the following lemma:

LeMMA 1. If x is a time dependent variable in the domain D whose behavior is
defined by its change_relation, as in section 3.3, then for every a € D

x = a A VeVb(change_relationy(a, e, b) — Lasts(—e,d)) — Lasts(z = a,d)

Informally, if during an interval no event occurs that can change the value of a
variable, the variable keeps its value.

Example 11. For the GRC the previous lemma ensures the following property:

COROLLARY 1. gate = closed A Lasts(—up, pt) — Lasts(gate = closed, pt)
meaning that, if the gate is closed and for the next pt time units no up command
will be issued then the bar will stay in the closed position. &

4.4 The pretty printer

Using a semantic encoding, current time shows up in the proofs, whereas a pecu-
liarity of TRIO is to hide it. To restore the original TRIO syntax we have built
a pretty printer that can be activated during proofs, and substitutes the original
PVS display routines. The pretty printer takes over the printing of the sequent,
restructuring formulas to remove undesired information.

Hiding the current time . In this first, trivial example, the user should prove
that alpha, a time dependent predicate, is true now (i.e. at time 0). Indeed in
the original goal is alpha(0). The pretty printer hides the current time (0), and
reports that alpha is stated at current time in the first row of the sequent (>>>
AT: 0)':

without pretty printer | with pretty printer
EX1 : EX1 :
>>> AT: O
| -—————- |-=—=——=
{1} alpha(0) {1} alpha

4The pretty printer shows at which time instant the sequent is stated. For instance, >>> AT: d
means that the sequent is stated (and must be proven) at time instant d.
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Hiding explicit time. For formulas stated not at the current time, but at a given
distance (say t!l time units!®) in the future or in the past, the pretty printer
substitutes the explicit time value in the formula with the proper Dist operator:

without pretty printer | with pretty printer
EX1 : EX1 :
>>> AT: O
| -—————- |-=—=——=
{1} alpha(t!1) {1} Dist(alpha,t!1)

Temporal translation. Sometimes proofs are derived more easily adopting a point
of view different from the current instant (at time 0), as shown in the previous
examples, but another instant in the future or in the past. In this case the pretty
printer allows a temporal translation of every formula in the sequent, simplifying
it. The values of the translation is automatically computed or set by users using
a particular command. In the following example the formulas stated at t!1 are
correctly shown without any time (being t!1 the current time) and formulas stated
at t!1 + pt!1 are shown with a Dist(...,pt!1)

without pretty printer with pretty printer and temporal
translation

EX1 : EX1 :
>>> AT: t!'1

{-1} UpToNow(gate = closed) (t!1) {-1} UpToNow(gate == closed )

{-2} up(t!1) {-2} up

{-3} Lasts_ee(NOT down, pt!1)(t!1) | {-3} Lasts_ee(NOT down, pt!l)

| -===-—- |-===-—-

{1} gate(t!1 + pt!l) = open {1} Dist(gate == open, pt!'!l)

The pretty printer can be activated using the command (pprint on) or deac-
tivated using (pprint off). Temporal translation can be set by the command
(pprint at x), where x is any real value.

4.5 Proofs for our case study

We briefly outline the proofs we constructed in our system for the safety and utility
properties of the GRC. The safety property, simply stating that if the number of
trains in the critical region I is greater than 0, then the bar is closed, is formalized
by the following theorem:

THEOREM 1. Safety:
CTI > 0 — gate = closed

The first lemma used to prove safety, is the following:

LEMMA 2. gate_will_close :
down A Lasts;.(—up, pt) A pt > v — Futr(gate = closed, pt)

stating that if a down command is issued now and no up command is issued in the
future for an interval lasting at least « time units (the time that the bar takes to

15Notice that in PVS system-generated skolem constants are composed of an alphabetical string
followed by an exclamation mark and a natural number, e.g., t!1.
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reach the closed position), then at the end of that interval the bar will be closed.
The lemma is proved using temporal induction and case analysis. Case analysis is
done on the current state of the bar: closed, open, movingUp or movingDown. If
the bar is already closed, then the lemma immediately follows from Corollary 1.
In every other case the bar is either moving down or it starts moving down and
after at most y it will be closed, and afterwards it will stay closed because no up
command is issued.
The other lemma used to prove safety is

LEmMMA 3. CTPI, _is_safe :
CTI > 0 — Lasted;.(CTPI, > 0,7)

meaning that if there is a train in I, then CTPI, has been positive for at least 7

time units. For this reason CTPI, becomes greater than 0 at least vy time units

earlier than CTI . Therefore CTPI, can be safely used to foresee the number of

trains in I for 7 time units. This lemma is proved using the definition of CTPI,

and CTI (see page 19) and the temporal relations between RI, II, and IO (see page

27) and simply applying decision procedures for equalities and linear inequalities.
From these two lemmas, safety can be proved as follows:

(1) assume CTI > 0 (by hypothesis)

(2) then CTPIL, has been greater than 0 for at least < time units (thanks to
CTPIL, _is_safe)

(3) CTPIL, became greater than 0 at least v time units ago and then a down com-
mand was issued (thanks to the definition of down) and no up command has
been issued, because CTPIL, has been greater than zero afterward.

(4) a down command was issued at least - time units ago, then the bar is closed
(thanks to gate_will_close)

Hence if CTI > 0 then the bar is closed.
Besides safety, the GRC should ensure the second user requirement, utility, stated
as follows:

THEOREM 2. Utility:
Lasted(—~CTI > 0,7) A Lasts(—-CTI > 0,7 + dp — d) — gate = open

While safety asserts when the bar must be closed, utility specifies when it should be
open. The bar has to be open under two conditions, modeled by the two conjuncts
in the premise of the formula: no train has certainly been in the region I for
time units and no train will be in region I for v 4+ dy; — d,,- The first condition
corresponds to the - time units necessary to raise the bar from the closed position
after train exit from region I has been detected by sensors. In the second condition
the time constant v + dys — d,,, accounts for both the time 7 necessary to lower
the bar, and the maximal advance in lowering the bar with respect to actual train
entrance in region I due to the pessimistic assumption of maximal train speed (if
the train is traveling at the lowest possible speed, then the bar is lowered das — d,,
time units in advance).

The proof of utility is similar to that for safety. It exploits a lemma gate_will_open
(symmetric to gate_will_close) stating the conditions under which the gate will be
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open. Another lemma CTPI, _is_useful, taking the place of CTPIL,_is_safe, binds
CTPI, with CTI. Other auxiliary minor lemmas are proved through intensive use
of case analysis and temporal induction.

Notice that, with reference to the equation (1), safety and wutility properties are
clearly part of user requirements. Indeed proving these properties means proving
that equation (1) is true, i.e. user requirements follow from the model of the
environment and of the system (with sensors and actuators).

Note 7. Comparison with the previous approach. Comparing our current ap-
proach with the previous one [Alborghetti et al. 1997], proofs are now significantly
simpler and shorter. We need fewer axioms (7 against 20) and intermediate lem-
mas (8 against 36). But the most notable and meaningful improvement is in effort
for deriving the proof of the safety and utility property. To evaluate the effort
we have adopted a weighted measure for each command, counting a complex com-
mand as the number of atomic actions it requires; for example (ASSERT) would
count as 1, while (TRIO-LEMMA ’futr_interv_induction’ ’gate==closed’) would
count as 3. A total effort of 380 has been necessary to prove safety (against 1433
for the previous approach), and 497 (it was 2165) for utility, and 51 (it was 842)
for some auxiliary lemmas. The total effort is reduced to 928 against 4440, with an
improvement of a factor near to 5.

4.6 Methodological Remarks

Although the three components (theories, pretty printer, strategies) are designed
to work together, they might be used separately. This derives from our choice
to adopt an open, incremental approach, where the user should be encouraged to
using notations, constructs and tools as long as they fit his/her mentality and to
the extent to which they can deal effectively with the real needs for modeling and
analyzing.

Depending on his/her habits and preferences, a user might choose to use defi-
nitions of derived entities directly in PVS, without adopting the TRIO notation,
using explicit current time and therefore with no need to employ the pretty printer.

Conversely, a user might prefer to work in pure TRIO with no additional derived
entities, and therefore model the system to be developed only through plain TRIO
axioms, and use the combination of the encoding, the pretty printer, and PVS as
a sort of general purpose TRIO theorem prover.

Also, some of the notions or (fragments of) theories introduced in this paper
could be usefully embedded into existing methods, such as SCR [Heitmeyer et al.
1996] or LUSTRE [Halbwachs et al. 1992], to provide a full formalization of some
elements that are not completely formalized or to enrich their framework through
additional concepts and modeling constructs or reasoning schemes.

We believe that our gradual and modular approach suits better the needs of
the user: it allows a more gradual learning and makes our tool more usable. On
the contrary, most other comparable encodings are monolithic and supposed to be
used as a whole. Of course the most significant benefits can be obtained from our
approach when all components of our framework are used in conjunction.

In the initial phases of system modeling the high-level entities (e.g., events, in-
terval predicates and variables, non-Zenoness) can be used to identify the system
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components and characterize their basic properties. Some primary items denoting
elements of the environment or representing physical quantities may be stated to
belong to one of the types introduced in Section 2 (such types would be predefined
for the user). Some other items may be defined as derived, by means of suitable
axioms stating their logical equivalence to some TRIO formula, as shown in Section
3.2. Then, proving that these derived entities effectively belong to some types, like
e.g. point or interval variables, is a useful means for checking the internal con-
sistency of the model and for performing some preliminary validation activity. In
most cases suitable formulas, stating this consistency between potentially conflict-
ing parts of a system model, are generated automatically by PVS in the form of
TCC (Type Correctness Conditions) [Rushby 1997] and automatically proved (dis-
charged, in the lexicon of PVS), otherwise they remain as proof obligations to be
fulfilled by the user with the interactive assistance of PVS. When these consistency
conjectures prove to be false, this typically allows the designer to unveil some subtle
flaw in the model that has been overlooked until then.

Once the alphabet of the model is defined, the relations introduced in Section 3
can be used to formalize more dynamic aspects of the introduced items. Counters
and special predicates can be used to express constraints concerning the environ-
ment (e.g., to define minimal/maximal time elapsing between occurrences of spo-
radic events, or periodicity); a change_relation like that in Definition 10, Section
3.3, or its tabular representation can synthetically model portions of a system in
a style based on states and transitions. This approach is particularly suitable for
modeling sensors and actuators, devices relatively simple and with reduced amount
of memory, which perform limited amounts of computation.

Cause/effect relations and counters can be effectively used to express, directly
through ad hoc defined entities or more indirectly through suitable axioms, the
internal and external actions performed by the Device Under Construction to reach
the goals for which it is designed. This part of the model becomes the design
specification of the Device Under Construction and, composed as in equation (1)
with the models of the environment, the sensors and the actuators, can be used to
prove that the user requirements are indeed satisfied.

In our experience the proof of formula (1) rarely succeeds at the first attempt.
Most times difficulties in deriving such proofs are originated by defects in the crucial
and most complex components of the comprehensive system model, namely the user
requirements and the design specification.

To make such proofs more readable, understandable, and reusable, it is advisable
to organize them into a series of lemmas. This facilitates the designer in detecting
the cause of a difficulty or impossibility- to prove some conjectures and therefore
to trace such difficulties to their cause: conceptual errors, inaccurate or poorly
structured formalization of the system model, of the design specification or of the
user requirements.

The relation of logical dependency among the lemmas can be represented as a
tree or DAG graph: the upper part of such a graph will correspond to high-level
global properties from which the overall formula (1) should be derivable rather
directly, while the lower parts may correspond to details of a single component or
of a limited portion of the model.

It is desirable that proofs be conducted, possibly in a completely automated fash-
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ion, by applying systematically a few simple and standard derivation rules, like, e.g.,
the most common propositional tautologies, simple properties of quantifiers, math-
ematical induction. Such basic derivation rules may suffice in case it is possible to
model all system components totally in terms of the entities and constructs intro-
duced in Sections 2 and 3. Otherwise the proof may require the adoption of ad hoc
reasoning schemes. In any case it is important to structure proofs possibly in the
same way as models and specifications. This can be obtained, for instance, through
the introduction of suitable auxiliary predicates, variables, and intermediate lem-
mas, so to encapsulate and hide the most complex but immaterial details, and make
the derivation of the concluding lemmas as clear and intuitive as possible.

Failed attempts to derive formula (1) lead to adjustments and corrections that
eventually allow the designer to obtain a specification of superior quality, from
which the development can proceed in a more accurate and less error-prone way.
As example of correction of a specification obtained from System Requirement
Analysis, we cite [Alborghetti et al. 1997], where a quite subtle but potentially
severe error in a specification [Mandrioli et al. 1996] was detected during a failed
attempt to derive the user requirements using the method and tool described in
the present paper.

5. RELATED WORK

In this section we compare our work with other approaches and formal methods
for the analysis of critical systems. We present a brief comparison on the different
subjects we have tackled in this paper, mainly: non-Zenoness and finite variability,
continuity of interval variables, abstract relations among events, encoding in PVS.
Indeed PVS has been widely used by research groups to encode their formal lan-
guages and methods. Among approaches using other tools, we cite the encoding of
hybrid automata (particularly suitable to model variables with continuous behav-
ior) in STeP [Manna and Sipma 1998]. That approach employs a powerful method
mixing deductive proofs and automatic invariant generation.

Non-Zenoness and finite variability. In some formal languages non-Zeno behav-
ior is achieved by enforcing a fixed minimum system delay between two actions
(with action we informally mean whatever might change the system state). A fixed
minimum delay is implicitly assumed in temporal languages using discrete time (for
instance integer) and no simultaneous events (like the simplified version of SREL
used in [Yang et al. 1997]). However the same assumption is taken by some other
formalisms using continuous time, like timed CSP [Reed and Roscoe 1988] and AS-
TRAL [Coen-Porisini et al. 1997]. We believe that the assumption of a minimum
system delay, which is certainly of practical interest and may appear to be the only
solution ensuring finite variability, yields however a complicated theory which also
hampers effective abstraction on time.

The other approach, followed by our method and most other languages using real
time, prefers to avoid establishing a minimum lower bound on the distance between
event occurrences. Some methods, like Hybrid Automata [Henzinger 1996], can
allow Zeno behaviors and try to overcome possible problems introducing notions
like limits and techniques of regularization [Lygeros et al. 1999]. Other methods
introduce an explicit non-Zeno requirement, admitting only finitely variable entities.
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In some methods this requirement is also formally defined.

In languages modeling the system behavior as a sequence of events or states (with
time associated to every state) [Caspi and Halbwachs 1985; Merritt et al. 1991;
Manna and Sipma 1998], finite variability is defined requiring that time “eventually
increases above any bound” [Shankar 1993]. This way only a finite number of events
(but possibly greater than any fixed value) can occur simultaneously or fall within a
given time bound. For a definition of such requirement in PVS see [Shankar 1993].

The same assumption, in a different form, can be found in interval temporal
logics, see for instance the Duration Calculus [Chaochen and Hansen 1997] and, for
a formal definition (but without using RTGIL itself), RTGIL [Moser et al. 1997].
Note that interval temporal logics deal only with piecewise constant variables. For
this kind of variables we give a formal definition of non-Zenoness in TRIO.

An original contribution of our work on this subject is a formal definition of
non-Zeno requirement for variables in uncountable domains. Using TRIO itself to
define such requirement allows us to translate it in our encoding in PVS!6, and to
prove several interesting theorems, and reuse them in proofs of system properties.

Continuity of interval entities. In [Caspi and Halbwachs 1985] continuity of en-
tities is not established, but the operator (called current) to access at the variables
values is left continuous. Also counters (called counter) are left continuous. Right
continuous access operator (lcurrent) and counters (lcounters) are available. In
Duration Calculus (DC) [Chaochen and Hansen 1997] continuity is not considered
relevant, for the main DC operator, duration or [, does not depend on the value in
of variables in single points. Nevertheless the use of left continuous interval vari-
ables is suggested, to avoid problems using logical operators between predicates of
different continuity as explained in Section 2.6. RTGIL [Moser et al. 1997] simply
assumes variables to be right continuous.

Abstract relations among events. The idea of using counters to model relations
between events was already presented in [Caspi and Halbwachs 1985]. That work
used counters to model relations of precedence among events (that is an event or
a set of events must precede or follow another event). Also in [Yang et al. 1997]
counters are directly used to specify system requirements (like, for instance, “the
number of missiles fired is no more than the number of targets located so far”).
The generic requirement that a certain event must follow (or precede) another
can be enriched specifying a bounded delay between such events. This kind of
requirement is widely (also informally) used. Furthermore it is explicitly modeled
(somehow embedded within the language itself) in timed Petri Net [Merlin and
Farber 1976] and in MMT timed Automata [Merritt et al. 1991] (whose embedding
in PVS is done in [Archer and Heitmeyer 1996; Archer and Heitmeyer 1997b]). We
have shown how the use of counters can be extended to specify this relation in a
very simple and effective way.

16PVS, however, does not have a predefined theory for mathematical analysis (with definitions for
limit, analytic function ...). Therefore, the definition of non-Zenoness for variable in uncountable
domains using those constructs, could not be directly translated into PVS. Several attempts have
been made to define elements of mathematical analysis in PVS [Dutertre 1996]. Nevertheless, as
already noted at page 32, we preferred to exploit simple but very general conditions ensuring that
encoded variables are non-Zeno.
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Encoding in PVS. Since PVS has been proved suitable to encode other logics,
many formal real-time languages have been encoded in PVS. An interesting work
concerns DC [Skakkebak and Shankar 1994] and it adopts a semantic encoding
(save the encoding of the operator dur or [, a sort of integral operator). Moreover
that encoding has a very powerful pretty printer with functionalities similar to
ours (but a completely different implementation: they modified the parser used by
PVS, while we essentially overload printing methods of PVS exploiting the CLOS
overloading feature). DC is particularly suitable to express in a concise way complex
constraints about duration of systems phenomena, however it is not well suited to
express point entities, for instance events.

Many works use directly the logic of PVS to specify and verify real time systems.
Some early works have treated real time systems as sequential systems: that is
the system discretely changes assuming a sequence of states (containing time). For
example in [Shankar 1993] systems evolve step by step and every step has a time
associated with it. The same approach has been followed by [Hooman 1994], that
extends Hoare triples with timing constraint in every assumption (pre-condition)
and commitment (post-condition) pair. This approach is mainly oriented to the
verification of sequential systems like, for instance, computer programs. However,
an interesting application of this method to a real-time reactive system can be
found in [Vitt and Hooman 1996]. Recently PVS has been used also in [Dutertre
and Stavridou 1997], where the requirement analysis of a real avionic control system
is conducted without relying on any formal language besides PVS; however, state
variables used there are inspired to DC and data flows to LUSTRE [Halbwachs
et al. 1992] and SIGNAL [Benveniste et al. 1991]. State variables represent the
continuous variables of the system, like physical parameters, inputs and outputs,
and they are encoded in PVS simply as functions from time to their domain. Data
flows model the discrete components of the system, and they are synchronized by
a clock. Their encoding is slightly different from that for state variables, and for
this reason the authors introduce some conversion functions from a data flow to a
state variable.

The main disadvantage of using an encoding of another logic in PVS is that
experience with both (PVS and the source logic) is required. Furthermore these
systems normally present themselves as a whole: source logic, PVS libraries, and
proof strategies are strictly integrated and cannot be used separately. This signifi-
cantly increases the efficiency of the automatic conduction of proof previously done
by hand (as in [Archer and Heitmeyer 1997a; Archer et al. 2000]), but hinders their
use by designers with limited expertise in the use of the source logic (even if expert
in using PVS). Moreover single components like libraries or code cannot be reused
at all, since they are tailored to that particular system.

On the other hand direct specification in PVS of real-time systems suffers, as
pointed out in [Dutertre and Stavridou 1997], the lack of guidance in defining
entities, writing the specification, and conducting proofs: therefore designers must
write their own libraries from scratch, because PVS, like most higher-order logic
systems, is not expressly thought to deal with real time. When writing ad hoc
libraries, designers may obtain a simpler semantic, a clearer encoding of temporal
dependency, and a more application-oriented set of strategies, at the price, however,
of a lesser degree of generality.
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In our work we have tried to combine benefits from both approaches. From TRIO
we have taken the clear semantic of its entities like events and interval variables,
and natural yet powerful operators. TRIO experts should have no problems to lead
proofs in PVS using our encoding. Thanks to the pretty printer useless information
(added by the encoding) is hidden. However, our system uses a simple encoding
for temporal entities (used by many other approaches) and in this way libraries,
proof strategies and pretty printer might be reused by people with no knowledge
of TRIO.

6. CONCLUSIONS

In this paper we presented a framework consisting of the following components.

A descriptive notation for system modeling and requirements specification: the
real-time temporal logic TRIO, which provides a quantitative notion of time, as-
sumed as the linear set of real number, consistently with classical physics and
dynamic system theory, disciplines with which most engineers and mathematicians
have some familiarity.

A precise, formal definition, in terms of TRIO axioms, of several high-level no-
tions having a significant relevance in modeling real-world entities, such as events,
states, continuity, finite variability, (non)determinism, cause-effect relations.

An encoding of the TRIO logic and of the above mentioned high-level notions,
into the powerful, general purpose theorem prover PVS. We exploited the higher-
order features of PVS to simplify the encoding and to introduce suitable derived
inference rules and proof strategies, based on the original ones of PVS and especially
tailored to the proposed framework.

This framework is particularly well suited to supporting System Requirements
Analysis, a preliminary activity of crucial importance in the development of highly
critical systems. System Requirements Analysis requires modeling the environment
together with the Device Under Construction, stating the user requirements and
the design specifications, and combining all these to perform an accurate analysis
aimed at proving that the system will actually exhibit the desired properties. To
assess its actual usability, the framework was applied to model and analyze the
Generalized Railway Crossing (GRC) system, a well known and widely adopted
benchmark for the study of time- and safety-critical systems, whose timing features
proved to be more complex and subtle than those of many industrial applications
that we previously specified and analyzed using the TRIO language and its tool
environment [Gargantini et al. 1996; Basso et al. 1998]. The results of the GRC case
study have been satisfying, with significant improvements with respect to previous
exploratory work aimed at investigating the feasibility of the approach [Alborghetti
et al. 1997].

The contributions of the present work are both conceptual, technical and method-
ological.

From the conceptual viewpoint, we perform an in-depth analysis and formaliza-
tion of notions that are often stated informally or assumed implicitly but are seldom
adequately formalized, such as non-Zenoness for several kind of entities, finite vari-
ability, cause-effect relations. In doing so we provide precise formal semantics, in
terms of a very simple and basic temporal logic like TRIO, to notations having a
high relevance in the analysis and design of critical systems, such as tabular timed
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specifications, events, states, modes, etc.

On the technical side, we implemented our framework as a tool suite inside a
widely available, powerful theorem prover such as PVS. The various components of
the framework - encoding of the base logic, theories for modeling high level notions
and constructs, proof strategies for facilitating analysis and derivations, and pretty
printer to increase readability- can be used separately or in conjunction, depending
on user needs and preferences. Our choice to actually build tools based on the
framework is consistent with the now widespread belief that automated support to
analysis and design constitutes the authentic added value that formal methods can
provide to the computing community.

From a methodological perspective, our framework provides an effective support
to System Requirements Analysis, thus making more amenable this activity, which
is of crucial importance for the construction of correct, reliable critical systems, but
is often disregarded, being at time considered trivial, infeasible, or unworthy. Our
framework offers a predefined set of entities and tools, and it encourages engineers
to use them, thus avoiding the continuous reinvention of well-known, deeply stud-
ied notions and constructs. For the majority of applications of practical interest,
it should support the modeling and analysis of most system aspects, or of their
totality, by just applying in a rather straightforward manner predefined notions
and constructs. However the framework is open in nature: users can define new
high-level notions or ad hoc entities and properties in TRIO, or even work at the
level of the (higher-order) logic of PVS. It is obviously to be expected that using
ad hoc defined entities results of models and analysis could be less understandable
or reusable.

We successfully applied the framework also to several internally-generated exam-
ples, and we now believe that it could be usefully exercised on real-life industrial
applications, in particular it could effectively support System Requirements Anal-
ysis of complex time- and safety-critical systems: a typical application would be in
the Hazard Analysis for high-integrity safety related computerized control devices
for transportation systems [CENELEC (European Committe for Electrotechnical
Standardization) b; CENELEC (European Committe for Electrotechnical Stan-
dardization) a.

From a more conceptual side, further work will be addressed to providing a
completely satisfying formalization, in terms of PVS theories, of the notion of finite
variability: in the most general case we express it in terms of analytic functions,
for which no predefined theory exists in PVS. A more accurate conceptual analysis
could follow the direction of the work performed by [Dutertre and Stavridou 1997].
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