
A Metamodel-based Simulator for ASMs

Angelo Gargantini1 Elvinia Riccobene2 Patrizia Scandurra2

1 Dip. di Ing. Informatica e Metodi Matematici, Università di Bergamo, Italy
angelo.gargantini@unibg.it

2 Dip. di Tecnologie dell'Informazione, Università di Milano, Italy
{riccobene,scandurra}@dti.unimi.it

Abstract In this paper we present a general-purpose simulation engine
for ASM speci�cations. It has been developed as part of the ASMETA
(ASMs metamodelling) toolset which is a set of tools for ASMs based
on the metamodelling framework of the Model-Driven Engineering. We
brie�y present the ASMETA framework, how it has been developed, the
concrete textual notation or language (AsmetaL) it adopts for e�ectively
writing ASM speci�cations and the Asmeta simulator (called AsmetaS).
We explain the architecture of the simulator, its kernel engine, how it
works within the ASMETA tool set, and how it takes advantages from the
metamodelling approach. We discuss the features currently supported by
the simulator and how it has been validated.

1 Introduction

The Abstract State Machines (ASMs) [12] are nowadays acknowledged as a for-
mal method successfully employed as systems engineering method that guides
the development of complex systems seamlessly from requirements capture to
their implementation.

The increasing application of the ASM formal method in academic and indus-
trial projects has caused a rapid development of tools around ASMs of various
complexity and goals: tools for mechanically verifying properties using theorem
provers or model checkers [31,18,35], and execution engines for simulation and
testing purposes [32,8,36,14,34,15,19].

Since each tool usually covers well only one aspect of the whole system devel-
opment process, at di�erent steps modelers and practitioners would like to switch
tools to make the best of them while reusing information already entered about
their models. However, each tool introduces a di�erent syntax strictly depending
on the implementation environment, adopts its own internal representation of
ASM models, and provides proprietary constructs which extend the basic math-
ematical concepts of the ASMs. Therefore, ASM tools are loosely coupled and
their integration is hard to accomplish, so preventing ASMs from being used in
an e�cient and tool supported manner during the system development life-cycle.

Furthermore, there is no agreement around a common standard and open
ASM language. The result is that a practitioner willing to use ASM tools needs
to know all the di�erent syntaxes and that most ASM researcher papers, pre-
sentations and examples, still use their own ASM notation, normally not de�ned

by a grammar but in terms of mathematical concepts. Due to the lack of ab-
stractness of the tool languages, the process of encoding ASM models is also
not always straightforward and natural, and one needs to map mathematical
concepts into types and structures provided by the target language.

To achieve the goals of developing a uni�ed abstract notation for ASM, a
notation independent from any speci�c implementation syntax and allowing a
more direct encoding of the ASM mathematical concepts and constructs, and
developing a general framework for a wide interoperability and integration of

tools around ASMs, we exploited the metamodelling approach suggested by the
Model-Driven Engineering (MDE) [11,23,26].

Metamodelling is intended as a modular and layered way to endow a language
or a formalism with an abstract notation, so separating the abstract syntax and
semantics of the language constructs from their di�erent concrete notations, and
allowing to settle a �exible object-oriented infrastructure for tools development
and interoperability. A metamodel-based abstract syntax de�nition has the great
advantage of being suitable to derive from the same metamodel (through map-
pings or projections) di�erent alternative concrete notations, textual or graphical
or both, for various scopes like graphical rendering, model interchange, standard
encoding in programming languages, and so on. Therefore, a metamodel could
serve as standard interlingua on which tool development should be based.

Furthermore, metamodelling allows to settle a �global framework� to enable
otherwise dissimilar languages (of possibly di�erent domains) to be used in an
interoperable manner in di�erent technical spaces, namely working contexts with
a set of associated concepts, knowledge, tools, skills, and possibilities. Indeed,
it allows establishing precise bridges (or projections) among the metamodels of
these di�erent domain-speci�c languages to automatically execute model trans-
formations.

Exploiting the advantages o�ered by the metamodelling approach, we have
developed an ASMmetamodelling (ASMETA) framework which provides a global
infrastructure for interoperability of ASM application tools (new and existing
ones) including ASM model editors, ASM model repositories, ASM model val-
idators, ASM model veri�ers, ASM simulators, ASM-to-Any code generators,
etc. The ASMETA framework helps developers to build new tools by providing
an XMI-based interchange format, standard JMI APIs, and several MOF-related
facilities which supply standard projections toward other technical spaces. A de-
veloper who is interested in developing a new tool for the ASMs can completely
base the tool development on the ASMETA framework and exploit all technolo-
gies provided by ASMETA in terms of speci�cation language, abstract storage
(i.e. the MOF-based model repository), APIs, interchange format, etc.

In this paper we present a case study of a tool based on the ASMETA frame-
work: a simulator (called AsmetaS), written in Java, to make the ASM models
executable. We present the architecture of the AsmetaS, its execution engine,
how it works within the ASMETA tool set, and how it takes advantages from
the metamodelling approach. We also discuss the features supported by the sim-
ulator, how it can be extended, and how it has been validated.

The paper is organized as follows. Sect. 2 presents the overall development
process of the ASMETA framework and the ASMETA tool set. Sect. 3 presents
a language we have de�ned to write ASMETA models in a textual notation. The
simulator is presented in Sect. 4. Related and future work are given in sections
5 and 6, respectively.

2 The ASMETA framework

ASMETA is an instantiation of the OMG metamodelling framework for the
ASMs, and it has been developed to create and handle ASM models exploiting
the advantages o�ered by the metamodelling approach and its related facilities
(in terms of derivatives, libraries, APIs, etc.).

In the following, we �rst explain the process, based on the metamodelling
approach, of developing a tool set around the ASM formal method, and then we
present the ASMETA toolset.

2.1 The ASMETA development process

The overall process of developing a tool set around a formal method exploiting
the metamodelling approach consists of the following steps:

1. Choice of a metamodelling framework and supporting technologies;
2. Development of the metamodel;
3. Metamodel derivatives development as additional facilities to handle models:

(a) model serialization (like the OMG's XMI standard, an XML-based for-
mat, OMG's CORBA Metadata Interfaces, etc.);

(b) APIs to access and manipulate models in a model repository (like JMIs,
CORBA IDLs, etc.);

(c) one or more concrete syntaxes (textual, graphical, or mixed) with their
parsers for type-checking and model storing;

4. Development of tools based on the metamodelling framework and SW arti-
facts to integrate existing tools with the metamodelling framework;

5. Validation of the metamodel and its derivatives.

The process may turn out to be iterative, to come back to previous steps and
make corrections.

To implement the ASMETA as MDE framework, we chose the OMG meta-
modelling platform even though many other implementations of the MDE princi-
ples exist, like the AMMAmetamodelling platform [5], the Xactium XMFMosaic
[7] initiative, the Model-integrated Computing (MIC) [25] and its tool-suite, the
Software Factories and their Microsoft DSL Tools [4]. We use the OMG's Meta
Object Facility (MOF) as meta-language, i.e. as language to de�ne metamod-
els. In particular, we adopt the MOF 1.4 MDR (Model Driven Repository) of
NetBeans [6] as model repository, the Poseidon UML tool (v. 4.2) as metamodel
editor, the XMI 1.2 format and JMIs as generated by the MOF MDR Netbeans
framework, and the OCL support provided by the OCLE tool [27]. Note that

current UML tools present several limitations regarding the support of OCL
constraints [13].

Steps 2. and 3. lead to the instantiation of the OMG metamodelling frame-
work, that we call ASMETA. We started by de�ning the AsmM, a metamodel for
ASMs [21,9], and then we derived from the metamodel some additional facilities
to handle models: an XMI (XML Metadata Interchange) [28] interchange format
for ASM models; JMI (Java Metadata Interfaces) APIs for the creation, storage,
access and manipulation of ASM models in a MOF-based instance repository; a
concrete textual notation, called AsmetaL (ASMETA Language), and its parser
to e�ectively edit ASM models conforming to the AsmM metamodel. Details
on the development of the metamodel and its derivatives can be found in [21,9].
How to build SW artifacts to integrate external and existing tools without forcing
them to waive their own notation and internal data representation, is reported
in [21].

The validation process applies both to the metamodel and to its deriva-
tives. Since the metamodel represents the abstract notation of a speci�cation
language, one may validate the metamodel by validating the expressive power
of languages derived from the metamodel. This was our approach. We have val-
idated the AsmM metamodel and the AsmetaL notation to asses their usability
and capability to encode ASM models, namely to test if AsmetaL is suitable
to encode non trivial ASM speci�cations and if the encoding process of mathe-
matical models is natural and straightforward. To this purpose, we have asked a
non ASM expert for porting some speci�cations from [12] and other ASM case
studies to AsmetaL. The task was completed within three man-months, by en-
coding almost all the examples provided in [12]. Up to now we have several ASM
speci�cations encoded in AsmetaL and available in [9].

The validation of the metamodel derivatives consists of the evaluation of their
capability to provide the desired global infrastructure for the development of new
tools, the integration of existing tools, and the tool interoperability in general.
The development of the simulator was a case study toward the validation of
the metamodel derivatives. In [21] details can be found on how the ASM tools
interoperability is achieved by the ASMETA.

2.2 The ASMETA tool set

Fig. 1 shows our plan of the ASMETA tool set which: (a) provides an intuitive
modeling notation having rigorous syntax and semantics, and provides a graph-
ical view of the model; (b) allows modeling techniques which facilitate the use
of the ASMs in many stages of the development process and which integrates
dynamic (operational) and static (declarative) descriptions, and analysis tech-
niques that combine validation (by simulation and testing) and veri�cation (by
model checking or theorem proving) methods at any desired level of detail; and
(c) supports an open and �exible architecture to make easier the development
of new tools and integration with other existing tools.

The ASMETA tool set consists of the following components (those visualized
in gray are still under development).

Figure 1. The ASMETA tool set

� The AsmM metamodel, based on MOF 1.4, (the abstract syntax), edited
with the Poseidon tool v.2.6 according to a UML pro�le for MOF 1.4. It rep-
resents in an abstract way concepts and constructs of the ASM formalism as
described in [12]. It was developed in a modular and bottom-up way. We started
separating the ASM static part represented by the state, namely domains, func-
tions and terms, from the dynamic part represented by the transition system,
namely the ASM rules. Then, we proceeded to model Basic ASMs, Turbo ASMs,
and Multi-Agent (Sync/Async) ASMs, so re�ecting the natural classi�cation of
abstract state machines. The complete metamodel contains 115 classes, 114 as-
sociations, and 150 OCL class invariants, approximatively.

� The AsmM OCL checker, based on the OCLE [27] tool and used to
check if a given model is well-formed or not with respect to the OCL constraints
de�ned over the AsmM metamodel.

� The AsmM Java Metadata Interfaces (JMIs) to manage the creation,
storage, access, discovery, and exchange of ASM models (either at design time
or runtime) in terms of Java objects.

� The AsmM XMI format which is XMI 1.2 compliant and is provided
in terms of an XML Document Type De�nition (DTD) automatically gener-
ated from the AsmM, for the interchange of ASM models among tools by XML
serialization. The AsmM-XMI format and the AsmM-JMIs have been gener-
ated automatically from the AsmM metamodel by using the MOF MDR (Model
Driven Repository) for NetBeans [6].

� The AsmetaL (ASMETA Language) textual notation for the AsmM, pro-
vided in terms of an EBNF (extended Backus-Naur Form) grammar generated
from the AsmM (the abstract syntax) as a concrete syntax to be used by mod-
elers to e�ectively write ASM models in a textual form.

� A text-to-model compiler to parse the ASM models written in the As-
metaL notation, check for their consistency with respect to the OCL constraints
of the metamodel, and translate information about concrete models into AsmM
instances in a MOF-based repository by using the AsmM JMIs.

� A standard library, namely a declarative collection of prede�ned ASM
domains (basic domains for primitive data values like Boolean, Natural, Integer,
Real, etc., and structured domains over other domains like �nite sets, sequences,
bags, maps and cartesian products) and functions which implement a set of
canonical operations on domains.

� A graphical notation, generated from the AsmM (the abstract syntax) as
an alternative concrete syntax to be used by modelers to e�ectively write ASM
models in a graphical form.

� The AsmetaS (ASMETA Simulator) simulator to make AsmM models ex-
ecutable; essentially, it is an interpreter which navigates through a model reposi-
tory where ASM speci�cations are stored (as instances of the AsmM metamodel)
to make its computations.

� The ASM Tests Generation Tool (ATGT) [10], an existing tool for test
case generation from models, which has been made AsmM-compliant.

� TheAsmM-to-CoreAsm andAsmM-to-SAL components which export
ASMETA models to the CoreASM [15] simulation tool and to the SAL veri�er
[29].

� A graphical front-end called ASMEE (ASM Eclipse Environment) which
acts as IDE to edit, manipulate, and export ASMmodels by using all tools/artifacts
listed above. This environment is implemented as an Eclipse plug-in.

All the above artifacts/tools are classi�ed in: generated, based, and integrated.
Generated artifacts/tools are derivatives obtained (semi-)automatically by ap-
plying appropriate MOF projections to the technical spaces Javaware, XMLware,
and grammarware. Based artifacts/tools are those developed exploiting the AS-
META environment and related derivatives; an example of such a tool is the
simulator (see Sect. 4). Integrated artifacts/tools are external and existing tools
that are connected to the ASMETA environment.

All available material on the ASMETA tool set (including source code, bina-
ries, documentation and a great variety of ASM speci�cations) can be found in
[9], under GNU General Public License (GPL).

3 AsmetaL programs

The ASMETA Language (or AsmetaL) is a metamodel-based language, in the
sense that it has been de�ned exploiting the MOF-to-text approach suggested
by the MDE and applicable to our ASM metamodel to derive a concrete syntax
compliant to the metamodel.

Initially, we investigated the use of tools like HUTN (Human Usable Textual
Notation) [22] or Anti- Yacc [16] which are capable of generating text grammars
from speci�c MOF-based repositories. Nevertheless, we decided not to use them
since they do not permit a detailed customization of the generated language and
they provide concrete notations strongly re�ecting the object-oriented nature of
the MOF meta-language, while ASM is not an object-oriented formalism (even
though it can model OO concepts). There are better MOF-to-grammar tools

now, like xText [17] of OpenArchitectureWare or TCS of AMMA [5], which we
may consider to adopt in the future.

In [20] we de�ne general rules on how to derive a context-free EBNF (Ex-
tended Backus-Naur Form) grammar from a MOF-compliant metamodel, and
we use these mapping rules to derive an EBNF grammar from the AsmM. The
AsmetaL textual notation is the resulting language. It is completely independent
from any speci�c platform and allows a natural and straightforward encoding of
ASM models according to the AsmM metamodel (the abstract syntax).

AsmetaL consists of four parts re�ecting the packages of the ASM mata-
model: the structural language which provides the constructs describing the
structure of an ASM, the de�nitional language which provides the notation to
de�ne the basic ASM elements such as functions, domains, rules, and axioms, the
language of terms which provides all the syntactic expressions to be evaluated
in an ASM state, and the behavioral language (or the language of rules) which
provides a notation to specify the transition rule schemes of an ASM.

Since this paper focuses on the simulator, we do not present here details of
AsmetaL. Its complete EBNF grammar can be found in [21,9] and a detailed
user guide is available at [9]. Note that a previous version of the language, called
AsmM concrete syntax, was presented in [30].

In [20], we also provide guidance on how to automatically assemble a script
�le and give it in input to the JavaCC parser generator [2] to generate a parser
for the EBNF grammar of the AsmetaL notation. This parser is more than
a grammar checker: it is able to process ASM models written in AsmetaL, to
check for their well-formedness with respect to the OCL constraints of the AsmM
metamodel, and to create instances of the AsmM metamodel in a MDR MOF
repository through the use of the AsmM-JMIs. All OCL constraints have been
syntactically checked and implemented by the OCL checker OCLE. This checker
is used by the AsmetaL parser, but it can be also invoked by all tools within
the ASMETA environment to check if a given model (or a subset of it, or just a
model element) is well-formed or not with respect to the invariants de�ned over
the metamodel.

ASM speci�cations encoded in AsmetaL (and suitable to be parsed by the
simulator) re�ect the working de�nition of an ASM model as given in [12] and
are structured into four sections: a header, a body, a main rule and an initializa-

tion. Fig. 2 shows a template of AsmetaL programs1. The name of the ASM is
speci�ed before the header section together with the optional keyword isAsyncr

to specify if the ASM is an asynchronous multi-agent or not. For single-agent
ASMs, isAsyncr has no meaning. Since we consider an ASM module as an ASM

1 We adopt the following conventions: keywords appear in bold face; a pair of square
braces [] (not in bold face) indicates that the enclosed expression is optional; a
variable identi�er starts always with an initial �$�; an enum literal is a string of
length greater than or equal to two and consisting of upper-case letters only; a
domain identi�er begins always with an upper-case letter; a rule identi�er always
begins with the lower-case letter �r� followed by �_�; a function identi�er always
begins with a lower-case letter, but can not start with �r_�.

without the main rule and without a set of initial states, a module is speci�ed
like an ASM but replacing the keyword asm by the keyword module.

The header section consists of some import clauses and one export clause

which describe the ASM interface for the communication with other ASMs or
ASM modules. The signature contains the declarations of domains and functions
occurring in the ASM. Every ASM is allowed to use only identi�ers (for functions
and rules) which are declared within its header's signature or imported from
other modules. The imported functions will be statically added (together with
their domains and codomains declarations) in the signature of the machine as
completely new functions and the imported rules will enrich the module interface
of the machine.

The body section consists of de�nitions of static domains and static/derived
functions already declared in the signature, declarations of transition rules, and
declaration of axioms stating assumptions and constraints on functions, domains,
and rules of the ASM.

The main rule is a named transition rule denoted by the keyword main. It is
closed (i.e. it does not contain free variables) so that its semantics depends only
on the state of the machine. Executing an ASM means executing its main rule
starting from one speci�ed initial state. If the ASM has no main rule, as default,
the ASM is started executing in parallel the agent programs given by the agent
initialization clauses in a speci�ed initial state.

The initialization section consists of a set of initial states, one of which is
elected as default. Fig. 2 shows the schema of an initial state. An initial state
de�nes an initial value for every dynamic function and every concrete-domain

already declared in the signature of the ASM2. The initial state associates each
agent domain (as subset of the prede�ned Agent domain) with its program (a
named transition rule).

Fig. 3 shows the speci�cation written in AsmetaL of a Flip-Flop device. The
model, originally presented in [12, page 47] and reported below, contains two
rules: the �rst one (Fsm) models a generic �nite state machine and the second
one (FlipFlop) instantiates the Fsm for a Flip-Flop:

Fsm(i,cond,rule,j) =
if ctl_state = i and cond

then {rule, ctl_state := j}
endif

FlipFlop = {Fsm(0,high,skip,1),Fsm(1, low,skip,0)}

4 AsmetaS

In this section we present the basic design of the ASMETA Simulator, its use, its
main features and the validation activities we are carrying on. AsmetaS is inte-
grated in the ASMETA tool-set framework and it operates directly on instances

2 Only dynamic (non-monitored) functions and concrete-domains need to be initial-
ized.

Figure 2. Template of AsmetaL programs

asm FLIP_FLOP import STDL/StandardLibrary

signature:

domain State subsetofNatural

controlled ctl_state : State

monitored high : Boolean

monitored low : Boolean

definitions:

domain State = {0,1}

macro r_Fsm ($ctl_state in State, $i in State,

$j in State, $cond in Boolean, $rule in Rule) =

if $ctl_state=$i and $cond

then par

$rule

$ctl_state := $j

endpar

endif

axiom over high(),low(): not(high and low)

main rule r_flip_flop = par

r_Fsm(ctl_state,0,1,high,< <skip> >)

r_Fsm(ctl_state,1,0,low,< <skip> >)

endpar

default init initial_state:

function ctl_state = 0

function high = false

function low = false

Figure 3. Flip-Flop Speci�cation in AsmetaL

of ASM models in the ASMETA repository which is a metadata repository based
on the Netbeans [6] libraries. Hence, the simulator reads ASM speci�cations in
terms of instances of JMI objects representing the speci�cation the user wants
to simulate; therefore, it does not need to implement a parser, a type checker,
and an internal representation of the model to simulate. The speci�cation in
the repository can be loaded from textual AsmetaL �les by using the AsmetaL
parser in our tool set (as shown in Fig. 4), but AsmetaS works regardless the
way models are loaded in the repository.

Starting from the ASM model representation in terms of Java objects, at
every step the simulator builds the update set according to the theoretical de�-
nitions given in [12] to construct the run of the model under simulation. In the
following, we explain the architecture we have designed to perform this task.

4.1 Basic Classes

At every step of the execution, the simulator must compute the value for ev-
ery term and expression it evaluates in order to build the update set. We have
introduced a class Value and its hierarchy (see Fig. 5) to represent all the pos-
sible values of ASM locations. For every AsmM domain D, we have de�ned a

Figure 4. AsmetaS and the ASMETA Repository

Figure 5. Value hierarchy

Figure 6. Basic classes

DValue subclass which represents in Java the values of D. For simple domains
the translation to Java is straightforward: we have used the correspondent Java
types (e.g. values of the ASMETA Integer domain are represented by Java in-
tegers). Other structured domains required the use of other Java classes (like
collections). Note that the encoding in Java of ASM values is approximate: for
example the integers used by the simulator have a de�ned range (de�ned by the
Java language), while the ASM integers are the mathematical integers.

Then we have introduced the class Location (see Fig. 6) to represent an
ASM location and the abstract class LocationValues which maps locations
to their values, i.e. LocationValues is a set of pairs (location,val). The class
LocationValues has two subclasses: State which represents the state of an
ASM, and UpdateSet which represents an update set. VariableAssignment
maps logical or location variables (not nullary functions) to their values and it is
used to evaluate a let rule, a let term or a macro call rule with parameters. The
Environment class represents the stream where to get the values of monitored
functions. In the interactive mode (see Sect. 4.3), it will be instantiated by
an interactive environment which asks to the user for the values of monitored
quantities. The state must keep a reference to the environment in use, since the
value of monitored functions are provided by the environment.

Figure 7. Evaluation process

4.2 AsmetaS Kernel

The simulator keeps the current state (an instance of State class) of the ASM
it is simulating and on request evaluates the values of terms and computes (and
applies) the update set (an instance of UpdateSet class) to obtain the next state.
Regarding the evaluation of expressions, several solutions are possible: our main
goal is to avoid the modi�cation of the metamodel and to make the evaluation

process modular and easy to modify and extend. Adding a method �value()� in
every subclass of the class Term in the AsmM would require the modi�cation of
the metamodel, and Moreover, this solution is di�cult to maintain and expand,
since it spreads the evaluation code in all the classes. The classical solution is to
introduce one class representing the evaluation process, called Visitor, and to
use a double dispatching pattern called visitor pattern. The visitor pattern would
still require the addition of a single method accept in every Term subclass. The
accept method invokes the visit method of the visitor it accepts. To completely
avoid any modi�cation of the metamodel, we have de�ned a re�ective visitor
pattern instead of using the classical visitor pattern: the visitor class still de�nes
a method visit for every Term subclass, but it also inherits a visit(Object) from
a ReflectiveVisitor which dispatches to the matching method by using the
re�ection mechanism and not by the accept methods. In this way the addition of
a subclass in the hierarchy of the class Term would require only the addition of a
method in the visitor class, while the introduction of another visiting operation
would require the introduction of a new extension of the re�ective visitor.

The re�ective visitor pattern proved to be very e�ective, and we have applied
it also to perform other operations (rule evaluation, term and rule substitution,
free variables �nding, and user interface). The complete hierarchy of the visitor
pattern used is shown in Fig. 8 3.

To compute the update set, a RuleEvaluator which extends the Reflec-

tiveVisitor is introduced. It de�nes a method visit(RuleType R), for every
RuleType subclass of the Rule class of the AsmM. Given a rule R for which the
simulator must compute the update set, the RuleEvaluator calls the matching
visit method accordingly to the type of R to obtain the update set of R.

Figure 8. Re�ective Visitor Classes

The same re�ective visitor pattern is applied also for variable substitution
in terms and rules (in case of macro call rules with parameters). If a R(x) is

3 Note that the content of Fig. 5, 6, and 8 could be back annotated at metamodel
level, by de�ning a separate, but related, metamodel which would represent these
extra information for the evaluation of terms.

called with x = t, the RuleSubstitution visits R and returns a new rule with
x substituted by t.

4.3 How to use AsmetaS

AsmetaS can be used in a command line mode. In this mode it is invoked from
a shell by passing it as arguments the name of the speci�cation �le and some
optional termination conditions for the run (option -n 10 for a �xed number
of steps, or option -n? to execute till empty-updates). We have developed also
a graphical interface based on Eclipse, called ASMEE (ASMETA Eclipse Envi-
ronment). ASMEE can be used as a graphical front end for the AsmetaL parser
to edit ASM speci�cations (with syntax highlighting support and other editing
features), and to export the XMI format of ASM speci�cations. ASMEE is also
a graphical front end of AsmetaS and it allows the user to control the simulation
and inspect its results (e.g., by performing single steps forward, observing the
functions updates, etc.). The ASMEE can be seen as an IDE of ASM speci�ca-
tions. A screenshot of the ASMEE IDE is shown in Fig. 9.

Figure 9. A screenshot of the ASMEE IDE.

Depending on the mechanism adopted to fetch values of monitored functions,
the simulator can operates in two modes: interactive mode and batch mode. In
the interactive mode, the simulator explicitly asks for values from the standard
input device; in case of input errors, it alarms the user by printing an appropriate
message on the standard output device inviting the user to address and remove
the error. In batch mode, the simulator reads the functions values from a speci�c
�le with extension .env, containing all the values of monitored functions and in
case of errors it terminates throwing an exception.

4.4 Key Features

A list of the key features currently supported by AsmetaS follows.

Supported Constructs AsmetaS currently supports all the terms in the meta-
model, all the rules except the TurboRules and their derived, but it does support
the SeqRule. We plan to add the support for this kind of rules in the future.
Regarding the non deterministic choice, it supports the ChooseRule with a real
pseudo non determinism (i.e. there exist two evaluations of the same choose rule,
starting from the same state, and producing two di�erent update sets). However,
choose and forall constructs over in�nite domains are unsupported, e.g. a �forall
$x in Integer� term or rule is rejected.

Recursive Functions AsmetaS supports the interpretation of recursive static
functions. Static functions should be used instead of value returning rules, which
are not supported yet. For example, the following function qsort returns the
ordered version of the sequence of integers taken as argument.

function qsort($s in Seq(Integer)) =

if length($s) = 0n then [] else

let ($pivot = first($s)) in union(union(

qsort([$x | $x in $s with $x < $pivot]),

[$y | $y in $s with $y = $pivot]),

qsort([$z | $z in $s with $z > $pivot]))

Axiom checker AsmetaS implements an axiom checker, which (optionally) at
the end of each transition execution checks if the axioms (if any) expressed over
the currently executed ASM speci�cation are satis�ed or not. If an axiom is not
satis�ed, AsmetaS throws an InvalidAxiomException, which keeps track of the
violated axiom.

Consistent Updates checking The simulator also includes a checker for revealing
inconsistent updates; in case of inconsistent updates an UpdateClashException

is thrown to alarm the user. The UpdateClashException records the location
which are being inconsistently updated and the two di�erent values which are
assigned to that location. The user, analyzing this error, can detect the fault in
the speci�cation.

Two extension mechanisms AsmetaS can be extended in two ways without mod-
i�cation of its code to customize both the interpretation of unde�ned static
functions and the evaluation of monitored functions. Any extension of the meta-
model, for example to include new kinds of terms and rules, would require the
modi�cation of the AsmetaS code.

The �rst extension is the introduction of new static unde�ned functions whose
interpretation is given in terms of Java code. In this case, the developer must
(i) put the declaration of the functions in an AsmetaL module (like MyLib.asm),
(ii) write a class (like MyLib.java) with a static method having name and ar-
guments equals to the new static functions and return value of type Value and
(iii) associate the module and the class by calling a method register of the
StaticFunctionEvaluator. We have adopted this simple mechanism for the
functions declared in the StandardLibrary (like plus, ...). When the Static-

FunctionEvaluator �nds a function f which has been declared in a module M
but it has not been de�ned in M (like all functions of the StandardLibrary), it
searches the class C registered with M, and invokes the Java method f of C.

The second extension mechanism allows the designer to extend the way the
AsmetaS evaluates monitored functions (by default either from the console by
asking to the user or from an environment �le). This extension mechanism needs
the de�nition of a new class implementing the Environment abstract class and
passing an instance of the new class to the AsmetaS when starting the simulation.
In this way, one may de�ne a graphical environment which asks to the user the
values of monitored variables by means of graphical dialogs or de�ne an ad-hoc
environment which reads the monitored quantities from an external device.

Random simulation By using the second extension mechanism, we have intro-
duced a random environment which produces random values for monitored func-
tions. The random environment can be used by the developer to validate the
speci�cation against, for example, its axioms. We have performed a �rst val-
idation of the AsmetaS code by using a random simulation (to see if all the
constructs are supported, if NullPointer exceptions occur and so on).

Logging AsmetaS (and ASMEE) produces a minimal output to show the current
state and the update set. Normally, the output is sent to the standard output
(and to an XML �le called log.xml in the working directory). However, the
user can increase the output to inspect how the simulator performs particular
tasks (including the evaluation of terms, the building of update set for rules, and
the substitution of variables) by providing a log4j [3] con�guration �le in which
he/she activates and sets the level of the logging facilities of AsmetaS classes.

The log messages are sent to the logger and formatted in XML. We have
adopted the XML since the log output can be easily processed in this way by
other tools to further analyze the runs produced by AsmetaS.

4.5 Validation

We have validated the AsmetaS code by de�ning a wide range of JUnit test cases
and Fit tables [1]. A Fit table is a simple table written for example in HTML

which speci�es some test cases by de�ning the expected outputs by executing
some operations on given inputs. Our Fit tables de�ne the expected �nal states of
simple AsmetaL programs containing each only few types of terms or rules. Then,
the tester runs the �t framework and the results are given again in a table which
reports, besides the expected outputs, also the actual outputs. For example, the
Fit table in Fig. 10 shows the result obtained running a set of test cases (one for
each row) while simulating a speci�c AsmetaL model (�rst column with header
asmPath), for a given number of steps (second column nTimes), and for which
we specify the expected �nal state (third column state()). Discrepancy of the
expected �nal state and the actual �nal state are marked in red. Fit tables are
available at the ASMETA web site [9].

Figure 10. Fit Table

5 Related work

A number of ASM tools have been developed for model simulation.
The Abstract State Machine Language (AsmL) [8] developed by the Foun-

dation Software Engineering group at Microsoft is the greatest e�ort in this
respect. AsmL is a rich executable speci�cation language, based on the theory of
Abstract State Machines, expression- and object- oriented, and fully integrated
into the .NET framework and Microsoft development tools. However, AsmL does
not provide a semantic structure targeted for the ASM method. �One can see it
as a fusion of the Abstract State Machine paradigm and the .NET type system,
in�uenced to an extent by other speci�cation languages like VDM or Z� [37].

Adopting a terminology currently used, AsmL is a platform-speci�c modeling
language for the .NET type system. A similar consideration can be made also
for the AsmGofer language [32]. An AsmGofer speci�cation can be thought, in
fact, as a PSM (platform-speci�c model) for the Gofer environment.

Other speci�c languages for the ASMs, no longer maintained, are ASM-SL
[14], which adopts a functional style being developed in ML and which has
inspired us in the language of terms, and XASM [36] which is integrated in
Montages, an environment generally used for de�ning semantics and grammar
of programming languages.

Recently, other simulation environments for ASMs have been developed, in-
cluding the CoreASM [15], an extensible execution engine developed in Java,
TASM (Timed ASMs) [34], an encoding of Timed Automata in ASMs, and a
simulator-model checker for reactive real-time ASMs [33] able to specify and ver-
ify First Order Timed Logic (FOTL) properties on ASM models. Among these,
the CoreASM engine is the more comparable to ours.

Like our simulator, CoreASM is a general-purpose ASM simulator, is written
in Java, and its textual syntax for writing ASM specs and our AsmetaL notation
are very similar (at least in de�ning the rule schemes). While we statically enforce
type correctness, since we perform the type checking prior execution during the
evaluation of the OCL constraints de�ned over the AsmM metamodel for the
functions' domains, the CoreASM supports dynamic type checking. Although
dynamic type checking gives more freedom and �exibility to the modeler, this
�exibility is at the cost that type checking errors occur unpredictably at run-
time and that type errors are detected only if executed. The advantages of static
checking are that potential errors can be identi�ed earlier, the speci�cation is
better documented, more care is needed in the design, and implementations can
take advantage of the additional information to produce more e�cient programs
with less runtime checking code. Moreover, a CoreASM speci�cation is struc-
turally made of a header block, where various de�nitions take place, and a rule

declaration block for the rules de�nitions (including the init rule that creates
the initial state); however, the CoreASM Kernel does not de�ne anything for
the header section. What goes into the header section depends on the plugins

that are used. Most of the functionalities of the CoreASM engine are imple-
mented, in fact, through plug-ins to the basic kernel. The architecture supports
three classes of plug-ins: backgrounds (provide all that is needed to de�ne and
work with new backgrounds), rules (to implement speci�c rule forms) and poli-
cies (to implement speci�c scheduling policies for multiagent ASMs). Although
the plug-in mechanism makes the CoreASM architecture extensible, few stan-
dard plugins come with the engine and the development of new ones is not so
easy as it requires, especially for background plug-ins, an extension of the parser
de�ning the concrete syntax (operators, literals, static functions, etc.) needed
for working with elements of the background, an extension to the abstract stor-
age providing encoding and decoding functions for representing elements of the
background for storage purposes, and an extension to the interpreter providing
the semantics for all the operations de�ned in the background. Clearly, all these

extension points require a certain e�ort and expertise in Java programming. Our
ASMETA framework does not support the extension via plugins; it can be ex-
tended in a more classical way only by adding new classes to the metamodel for
new concepts, for example for new kinds of terms or rules. The AsmetaS o�ers
two extension mechanisms to customize both the interpretation of unde�ned
static functions and the evaluation of monitored functions, as already explained
in Sect. 4.4.

6 Conclusions and future directions

We have presented the ASMETA tool set for Abstract State Machines, and in
particular the ASMETA simulation engine for executing ASM models.

The ASMETA metamodelling framework has been developed based on the
MDE's metamodelling approach. It is based on a core abstract speci�cation lan-
guage, namely the AsmM metamodel, which represents a set of mathematical
concepts used for the de�nition of ASMs, and acts as an interlingua among tools.
A concrete textual notation, AsmetaL, and a parser have been constructed in
a generative manner from the ASMETA framework to e�ectively write ASM
models. An alternative visual notation is also being de�ned to this purpose. The
developed simulation engine makes ASM models executable and assists, there-
fore, the modeler in identifying omission and logical errors. The model analyzer is
still under development and it will be used to prove whether certain desired prop-
erties of the system are true. The integration with the ATGT tester is already
available and it can be used to generate a complete test set for the implementa-
tion. Finally, a graphical front-end called ASMEE (ASM Eclipse Environment)
has been implemented as an Eclipse plug-in to allow editing and manipulation
of ASM models within an integrated development environment.

Although ASMETA targets the ASMs, our approach can be applied to any
formal method to develop a tool set around it. Future work will include the
integration of more existing tools and the development of new ones in the AS-
MEE IDE. We believe that the development of code engineering tools (including
code generation, reverse engineering, and synchronized round-trip engineering)
supporting speci�c compilation techniques is an easy task to accomplish by im-
plementing appropriate walkers capable of navigating throughout the AsmM
abstract storage.

Moreover, we intend to upgrade the AsmM to MOF 2.0 and we are evaluating
the possibility to exploit other metamodelling frameworks to better support
model transformations such as the ATL language [5], the Xactium XMF Mosaic
[7], to name a few, and model evolution activities [24] such as model re�nement,
model refactoring, model inconsistency management, etc. Today, only limited
support is available in model-based development tools for these activities, but a
lot of research is being carried out in this particular �eld to establish synergies
between model-driven approaches like MDE and many other areas of software
engineering including software reverse and re-engineering, generative techniques,
grammarware, aspect-oriented software development, etc.

References

1. Fit: Framework for integrated test. http://fit.c2.com/.
2. Java Compiler Compiler. https://javacc.dev.java.net/.
3. Log4j. http://logging.apache.org/log4j.
4. Microsoft DSL Tools in Visual Studio 2005. http://lab.msdn.microsoft.com/

teamsystem/workshop/dsltools/.
5. The AMMA Platform. http://www.sciences.univ-nantes.fr/lina/atl/.
6. The Model Driven Repository for NetBeans. http://mdr.netbeans.org/.
7. The Xactium XMF Mosaic. www.modelbased.net/www.xactium.com/.
8. The ASML Language. research.microsoft.com/foundations/AsmL/.
9. The Abstract State Machine Metamodel website. http://asmeta.sf.net/.
10. ATGT: ASM tests generation tool. http://cs.unibg.it/gargantini/projects/

atgt/.
11. Jean Bézivin. On the Uni�cation Power of Models. Software and System Modeling

(SoSym), 4(2):171�188, 2005.
12. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer Verlag, 2003.
13. Jordi Cabot and Ernest Teniente. Constraint support in MDA tools: A survey. In

ECMDA-FA, Proceedings, volume 4066 of LNCS. Springer, 2006.
14. G. Del Castillo. The ASM Workbench - A Tool Environment for Computer-Aided

Analysis and Validation of Abstract State Machine Models. In Proc. of TACAS,
volume 2031 of LNCS, pages 578�581. Springer, 2001.

15. The CoreASM Project. http://www.coreasm.org/.
16. D. Hearnden and K. Raymond and J. Steel. Anti-Yacc: MOF-to-text. In Proc. of

EDOC, pages 200�211, 2002.
17. Sven E�tinge. oAW xText - A framework for textual DSLs. In Workshop on

Modeling Symposium at Eclipse Summit, 2006.
18. A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS.

In Y. Gurevich et al., editor, Abstract State Machines: Theory and Applications,
volume 1912 of LNCS, pages 303�322. Springer-Verlag, 2000.

19. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to Generate Tests from
ASM Speci�cations. In Abstract State Machines, Advances in Theory and Practice,
number 2589 in LNCS, pages 263�277. Springer, 2003.

20. A. Gargantini, E. Riccobene, and P. Scandurra. Deriving a textual notation
from a metamodel: an experience on bridging Modelware and Grammarware. In
3M4MDA'06 workshop at the European Conference on MDA, 2006.

21. Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. Metamodelling a
Formal Method: Applying MDE to Abstract State Machines. Technical Report 97,
DTI Dept., University of Milan, 2006.

22. OMG, Human-Usable Textual Notation, v1.0. Document formal/04-08-01. http:

//www.uml.org/.
23. Stuart Kent. Model driven engineering. In IFM '02: Proc. of the Third Interna-

tional Conference on Integrated Formal Methods, pages 286�298. Springer-Verlag,
2002.

24. Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert
Hirschfeld, and Mehdi Jazayeri. Challenges in software evolution. In International
Workshop on Principles of Software Evolution (IWPSE'05), 2005.

25. Model Integrated Computing (MIC). http://www.isis.vanderbilt.edu/

Research/mic.html.

26. Jan Pettersen Nytun, Andreas Prinz, and Merete Skjelten Tveit. Automatic gen-
eration of modelling tools. In Proc. of ECMDA-FA, pages 268�283, 2006.

27. OCL Environment (OCLE). http://lci.cs.ubbcluj.ro/ocle.
28. The Object Managment Group (OMG). http://www.omg.org.
29. The Symbolic Analysis Laboratory. http://sal.csl.sri.com/.
30. P. Scandurra, A. Gargantini, C. Genovese, T. Genovese, and E. Riccobene. A

Concrete Syntax derived from the Abstract State Machine Metamodel. In 12th
International Workshop on Abstract State Machines (ASM'05), 8-11 March 2005,
Paris, France, 2005.

31. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The
WAM Case Study. J. of Universal Computer Science, 3(4):377�413, 1997.

32. J. Schmid. AsmGofer. http://www.tydo.de/AsmGofer.
33. Anatol Slissenko and Pavel Vasilyev. Simulator-model checker for reactive real-time

abstract state machines. http://rotor.di.unipi.it/AsmCenter/.
34. Timed Abstract State Machine. http://esl.mit.edu/html/tasm.html.
35. K. Winter. Model Checking for Abstract State Machines. Journal of Universal

Computer Science (J.UCS), 3(5):689�701, 1997.
36. XASM: The Open Source ASM Language. http://www.xasm.org.
37. Y. Gurevich and B. Rossman and W. Schulte. Semantic Essence of AsmL. Mi-

crosoft Research Technical Report MSR-TR-2004-27, March 2004 .

