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Abstract

We report on an experience in applying a formal
method to the specification and design of a system for
monitoring and controlling surface vehicle traffic in a
densely populated urban area. We illustrate the goals of
the experience and describe the specification, validation,
and verification activities. We also discuss the problems
deriving from the particular, but, under several aspects,
typical history of the application development, and from
applying formal methods in an industrial setting.
Finally, we assess the encouraging results obtained in
the project.

Key words and phrases: Experiences with formal
methods in project development, tool support for formal
methods application, costs of formal specification and
verification, control and automation systems, time- and
safety-critical systems, temporal logic.

1 Intreduction

Managing of large utility networks (railways,
underground, highways, telecommunications, oil and
gas transport, etc.), power production, transport and
distribution, are today largely automated processes, and
huge investments are made by several agencies and
companies to procure and update the automation
systems designed to support these processes. In many
cases these systems are committed to external industries
on the basis of requirement specifications. This fact
Justifies a widespread strategic interest for techniques and
tools supporting requirement specification guaranteeing
a clear separation from the subsequent design and
implementation phases, and a high degree of
maintainability of the specifications. Very often the
developed systems have a high social impact, in that
even a transitory malfunctioning may have important
consequences in terms of economical damages,
deterioration of the quality of social life, or even danger
for human lives. Therefore specification techniques must
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support rigorous procedures for system validation and
verification.

The obvious purpose of any specification is to
express requirements and to serve as a reference for the
successive phases of design, implementation,
verification, and maintenance. Before these are
undertaken, a very useful activity is often performed
(especially when the specified systems are particularly
complex or critical), namely the validation activity,
which consists of establishing whether the actual
requirements were indeed captured and correctly expresses
by the specification. On the other hand, the verification
activity is in charge of determining whether the
constructed system correctly implements the
requirements, as described (in a precise and possbly
formal manner) by the specification.

Theoretical and applied research in computer science
has been very active in the definition of formal methods
providing a support to the specification, validation,
verification, and maintenance of complex time and
safety-critical computer-controlled systems [REX91].
However, up to the current state of the art there is no
unified, consolidated, and widely accepted framework
able to support all the development life-cycle, from
specifying in an abstract, precise and unambiguous way
the system requirements, to validating such requirements
against user needs, to expressing design and
implementation choices, to verifying the developed
implementation (both by means of formal mathematical
proofs and of empirical activities such as testing)
against the stated requirements, to provide a support for
design and system documentation and for system
maintenance. Many formal methods, specification and
design languages and methodologies exist, however, that
provide an effective support for a subset of the above
outlined activities.

In the past years the software engineering research
group at Politecnico di Milano developed an
environment for the specification, validation, and



verification of time critical systems. This environment
is based on TRIO, a linear time metric temporal logic,
and includes a series of software tools providing (with
various degrees of automation) a support to the crucial
activities of the system development. TRIO is the result
of a long term cooperation between academia and
industry, therefore since the initial phases of its
definition it has been applied to several case studies
derived from industrial applications [CSt 90, CSt 92];
in recent years it was successfully employed in an
ESPRIT ESSI! project concerning the specification and
design of the control system of pondage power plants of
ENEL, the Italian Energy Board [BC&95].

In the present paper, we report our recent experience
in requirements formalization, design specification,
system validation, and verification of an application for
monitoring and controlling the surface vehicle traffic in
a densely populated urban area. This activity was
committed to the developers of the TRIO environment
by Italtel, while the developed application will be
installed in the metropolitan area of Milano and
possibly, in the future, in urban areas having similar
characteristics. The activity we report here constitutes
the first “purely industrial” application of the TRIO
based method, in that it was not motivated by any
scientific goal (such as, e.g., obtaining new theoretical
or methodological results or developing new support
tools) but it simply aimed at obtaining technical,
business, and organizational advantages by applying
(under strict economical and temporal limitations) the
TRIO language and environment to the development of
the product, without relying on any support whatsoever
from public or private research agencies.

The paper is structured as follows. Section 2 provides
a brief overview of TRIO: to make the succeeding
presentation reasonably self contained we illustrate the
syntax of the language and the definition of the used
derived operators. Section 3 illustrates the background,
motivations and objectives of the activity describing in
some detail the developed application, the history of the

I The ESSI program, supported by the European
Union in the ESPRIT framework, is intended to favor
the industrial use of novel technologies by partially
covering the additional costs (in terms of education,
training and experimenting) involved in their first
applications.

project and how the use of TRIO influenced the rather
traditional development cycle of Italtel. Section 4
provides a report of the performed activity, including a
few examples, simplified and abbreviated for reasons of
brevity. In Section 5 we draw conclusions pointing out
the most important technical results and the lessons
learned.

2 A brief overview of TRIO

TRIO is a first order logical language, augmented
with temporal operators that permit to assert properties
at time instants different from the current one, which is
left implicit in the formula. Unlike classical temporal
logic, TRIO allows the specifier to express strict timing
requirements by means of two basic operators—Futr and
Past—which refer to time instants whose distance, in
the future or in the past, is specified precisely and
quantitatively. We now briefly sketch the syntax of
TRIO and give an informal and intuitive account of its
semantics; detailed and formal definitions can be found
in [GMM90].

The alphabet of TRIO is composed of variable,
function, and predicate names, plus the usual primitive
propositional connectors ‘=’ and ‘—’, the derived ones
‘A, Vv, e’ ., and the quantifiers ‘3” and ‘V’, and
plus temporal operator symbols Futr and Past. The
language is typed, in that a domain of legal values is
associated with each variable, a domain/range pair is
associated with every function, and a domain is
associated with every argument of every predicate.
Among variable domains there is a distinguished one,
called the Temporal Domain, which is numerical in
nature: it can be the set of integer, rational, or real
numbers.

Variables, functions, and predicates are divided into
time dependent and time independent ones. This allows
for representing change in time. Time dependent
variables represent physical quantities or configurations
that are subject to change in time, and time independent
ones represent values unrelated with time. Time
dependent functions and predicates denote relations,
properties, or events that may or may not hold at a
given time instant, while time independent functions
and predicates represent facts and properties which can be
assumed not to change with time.
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TRIO formulas are constructed in the classical
inductive way. A term is defined as a variable, or a func-
tion applied to a suitable number of terms of the correct
type; an atomic formula is a predicate applied to terms
of the proper type. Besides the usual propositional
operators and the quantifiers, one may compose TRIO
formulas by using primitive and derived temporal
operators. There are two temporal operators, Futr and
Past, which allow the specifier to refer, respectively, to
events occurring in the future or in the past with respect

Operator Definition

AlwF(A) Vt (t >0 — Futr(A, t))
AlwP(A) Vi (t>0 — Past(A, t))
Alw(A) AlwP(A) A A A AIWF(A)
Som(A) —Alw (= A)

Lasts(A, d) Vd'(0<d'<d — Fuir(A, d")
Lasted(A, d) Vd'(0<d'<d — Past(A, d))

Unti](Al, Az)
Since (A, Ap)

2.1 Validation and verification in TRIO

Formal methods, being based on a solid mathematical
foundation, have a clear and unambiguous semantics, so
that the validation and verification activities can be
effectively supported by (semi)automatic software tools
that can greatly enhance the effectiveness and the
practical impact of such activities. This is the case with
TRIO, where an environment of tools for editing
specification, validating them and verifying design and
implementation has been developed in recent years at
Politecnico di Milano.

Broadly speaking, the validation activity can take in
TRIO the form of history checking, history generation
(i.e., simulation), and property proving.

When performing history checking [F&M94] the
designer invents (with the aid of a suitable tool)
histories of the modeled system (i.e., sequences of
events, system configurations, and values for the
significant quantities that represent a hypothetical trace
of a system execution) that in his/her view correspond
to a possible behavior of the specified system where the
requirements and properties are apparent. Such histories
are then checked, i.e., compared for consistency with the
specification, by considering each history as the frame
of an interpretation structure for the TRIO formulas.

3t (t>0 A Futr(A,, t) A Lasts(Aj, t) )
3t (t>0 A Past(A,, t) A Lasted(A}, t))
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to the current, implicit time instant. If A is a TRIO for-
mula and t is a term of the temporal type, then
Futr(A,t) and  Past (A, t) are TRIO formulas too,
that are satisfied at the current time if and only if
property A holds at the instant which is ¢ time units
ahead (resp., behind) the current time. On the basis of
the primitive temporal operators Futr and Past,
numerous derived operators can be defined for formulas,
including the following list.

Explanation

A will always hold

A has always held

A always holds

Sometimes A holds

A will hold over a period of length d

A held over a period of length d in the past
A, will hold until A, starts to hold

A, held since A, became true

The results of history checking are useful both to the
final user, who verifies that his/her expectations on the
system behavior are sensible, and to the specifier, who
controls that his/his understanding of the requirements
are correct and have been effectively formalized by
means of the formal notation.

A more sophisticated method of validation consists
of simulating the modeled system by generating (with
the support of suitable specialized interpreters, see
[MMM95]) histories of the specified systems under
particular constraints that may represent an initial
system configuration or particular combination of input
events coming from the environment and are assumed to
stress particular system functionalities that the designer
wants to explicitly visualize.

In the TRIO framework, verification can take the two
main forms of formal proofs and testing. Performing the
formal proof of the correctness of an implementation
w.r.t. its implementation requires that all relevant
features of the hardware system software employed are
themselves formalized, as outlined in [M&M94]. The
derivation of such proofs can be made manually using
the axiomatic system presented in [FMM94] or with the
support of a theorem prover, such as PVS, where the



TRIO semantics and axiomatic system have been
suitably encoded, as it was done in [Jef95].

Several years of experience of the authors in
cooperation between academia and industry have
however shown that formal proofs are not considered as
a practicaily convenient technology, whereas various
forms of testing are much more appreciated and widely
employed. Formal specifications in TRIO can be used to
support the generation of functional test cases, that
include both data to be input as stimuli to the system to
be tested, and expected results of the experiments, to be
compared with the actual reactions of the tested system.
Functional testing (often referred to in handbooks as
black box testing) verifies the requirements of the
system under test without any reference to the actual
hardware/software structure of the implementation; it
should be considered a complement, not an alternative,
to structural, white box testing, which is based on the
structural properties of the implementation (e.g.,
execution flow in software code). The activity of test
case generation from TRIO specification is supported by
a tool based on interpretation algorithms similar to
those for system simulation and, moreover, support the
annotation of test cases with information useful for the
testing experiment [MMMO95].

3 Background, motivations and objectives of
the project

Italtel is an Italian manufacturing company, leader in
the field of electronic devices and systems for
telecommunication. In recent years it extended its
activity to the areas of automation and control,
including the production of hardware/software control
and communication systems for the traffic regulation.

For organizational and economic reasons, in the
present project most of the system development,
starting from the specification requirement down to the
coding of software, was committed to an external,
relatively small, software house, called NUS; thus
during all the project, the personnel of Italtel played
mainly an organizational role: they established
deadlines, coordinated the various phases of the project,
organized meetings and information exchange among all
the participants.
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3.1 The developed system

The application we describe here is a centralized
system for monitoring and controlling surface traffic in
a high-traffic urban area, by means of a network of
sensors and traffic signals. The final purpose of the
system is to regulate the traffic in real-time depending
on the current flow of vehicles and on the condition of
the streets in the controlled area.

In the following we describe the system to be
developed and the objectives of its regulating action.

The regulation goal is the minimization of the stop
times of the vehicles at the traffic signals and the
minimization of the number of such stops, for the main
traffic flows in a urban area.

The urban area to be regulated is defined as a basin;
the basin encloses several crosses, where a cross can
contain several groups; a group is a part of the traffic
signal. composed of the set of colors that are met by a
traffic flow. As an example, a group can be the set red-
yellow-green, another group can be a set of red-yellow-
green right arrows. A cross can be composed of two
groups in the typical situation where we have two
intersecting traffic flows, or it can be composed of
several groups.

The system architecture was designed around the four
main kinds of performed operations, and therefore
included the following four components.

e Traffic Monitoring Station (TMS), in charge of
observing and estimating about the current vehicle
flow in a given cross.

¢ Semaphore Regulator (SR), in charge of managing
the green times of the traffic signals for a given
CrOss.

¢ Basin Regulator (BR), which coordinates several
SR’s. The geographical extension of a basin depends
on the traffic characteristics of the considered area and
on the desired level of regulation.

e (Control Center (CC): which coordinates several
BR’s and manages a system to provide the citizens
with information on the current state of the traffic.

The system is centralized, but its lowest parts can
operate also on a stand-alone mode, so that the
optimization and regulation functions for a cross are
carried out by the local SR. The possibility of a stand-
alone functioning permits its applications in urban areas
with a limited traffic flow; it reduces the information



flow in the communication network, and it limits the

damages in case of a crash in the CC.

The reported activity was centered on the TMS and
the SR, so in the following we describe in more detail
the structure and the functions of these two subsystems.

The TMS includes the following components:
¢ software procedures;

e several sensors installed on the street ground, to
count the vehicles passing through the cross, for
every traffic flow (the transmission latency between
a sensor and the computer system is negligible);

¢ a hardware unit, shared with the SR, built over an
Intel 80386 microprocessor.

The function of the TMS is the collection, analysis,
and storage of the traffic data, based on inputs coming
from sensors in several measure points. A measure
point is composed of one or two sensors. The TMS can
compute, on the basis of the inputs coming from the
single measure points, the number of vehicles and the
mean occupation time, while for the points provided
with a double measure device it can compute a vehicles
classification on the basis of the vehicle dimensions, the
vehicle mean speeds, and the vehicles density.

The TMS can manage several measure points (up to a
number of 64), by monitoring the state of the sensors,
with a sampling time of 10 msec. As a result, the TMS
gives to SR the following values:

» vehicle flow and mean speed, grouped by classes of
vehicle dimensions;

¢ vehicles flow and mean speed, transformed into an
equivalent conventional measure referred to a standard
vehicle type;

o density of vehicles;

e saturation index of the street.

The TMS component, moreover, provides statistics
and estimations of current and future traffic demand.
The SR includes the following components:

e software procedures;

e a hardware unit, shared with TMS;

¢ a configuration file, provided by an operator;

e a peripheral unit, composed of a keyboard and a
display, to be used by an operator to define the SR
configuration file or to regulate the traffic signals of
the cross manually.
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The configuration file determines the desired behavior
of the traffic signals of the cross; this behavior depends
on the geometric features of the cross and on the adopted
traffic regulation policies. The most important
information in the configuration file is the traffic plan.
The traffic plan is the sequence of several phases, where
a phase is characterized by the color of all the groups,
and by a phase-time. Some phases can be extended, on
the basis of calls coming from the way (pedestrians,
public transport means, ambulances, ...); some phases
can be executed only upon request.

The following list presents a sample of the functions
of the SR.

General functions.

e Tests about the integrity of the resident information
and the devices working.

e Execution of the traffic plan, with controls over the
possible conflicts between traffic flows.

e Start-up procedures.

¢ Manual commands management.

e Data transferring to external devices.

e Degraded working, in emergency situations.

Micro-regulation functions.

e Execution of phases called by pedestrians.

e Execution/extension of phases called by vehicles.

¢ Execution of phases called by emergency means.

Macro-regulation functions.

¢ Execution of a sequence of traffic plans, timed by a
daily plan.

e Generation of local traffic plans: SR tasks, using
“historical” traffic data, can generate and execute
traffic plans, to adapt dynamically its behavior to the
state of the traffic flows.

o Generation of centralized traffic plans: SR tasks
generate a traffic plan on the basis of "historical”
data and of corrections imposed by the BR.

Finally, to guarantee the safety of the overall system,
all the above described components contain procedures
for checking data integrity and for maintaining some
safety-related constraints (as a typical example two
traffic signals on intersecting flows can never be
simultaneously green).

3.2 Motivations and Objectives

The product developed in the described project is
intended to be proposed to administrations of urban areas



that intend to monitor and control the surface traffic. As
it is assumed that local administrations would acquire
such systems through a public bid where the
competitors would be evaluated on the basis of cost-
effectiveness of the proposed products, Italtel was at the
same time very concerned about conceptual aspects such
as logical correctness and safety, and about more
commercial aspects S\l\lCh as its overall development and
operation costs. As a consequence, our experience was
by no means a research project, but an actual industrial
development where the application of the formal method
should provably lead to tangible advantages, both
technical and economic.

During the development of the above described
semaphore system, Italtel decided to acquire an
independent assessment of the correctness and
effectiveness of the product specified and designed by
NUS. After some informal contacts and a study of the
current state of the art in the field they were convinced
of the usefulness of an approach based on formal
methods, adopted TRIO as a suitable formalism, and
asked the group of developers of the TRIO environment
inside the Software Engineering group at Politecnico di
Milano to organize the specification, validation, and
verification activity. At the time when this activity
started, the project had come to the following point: the
TMS component had been specified and implemented
(not yet tested), while the SR component had been
specified and was under implementation.

Our job would be to formalize in TRIO the
specification, analyze and validate it, and provide a plan
for functional testing obtained from the TRIO
specification as a set of test cases. The fact that this
activity was not planned from the beginning of the
development, and that it took place when the
specification phase had already been completed and the
coding was under way, was the main source of
inconveniences in applying the TRIO-based method.

The work started with the study of the informal
specification of TMS and SR [NUS95]. Not
unexpectedly, the available documentation was
incomplete and inconsistent. Many sections expressed
design solutions rather than appropriately abstract
requirements and constraints, It was a real challenge to
avoid taking wrong steps under strict project deadlines
and limited resources.
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A further difficulty derived from the fact that the
informal specification, although stated as “functional”,
was in fact written in a very operational style: for
instance it contained several flow-charts with conditions
and actions described in terms of software variables (or
in a completely informal manner), and all temporal
aspects were specified in terms of counters periodically
updated by the software. Therefore, some of our work of
formalizing the specification was in fact a “reverse
engineering” operation, where we tried, to the extent
compatible with the available resources, to extract an
abstract version of the requirements from the accessible
documentation. To some degree, we also adapted the
TRIO formalism, which is descriptive in nature, to
describe in a more operational fashion some operations
and procedures that it would have been too long and
costly to rephrase in a completely different manner.

As our work proceeded we met still another difficulty,
deriving from the fact that the initial, informal
specification had not been updated to keep it consistent
with the modifications introduced during design and
implementation.

4 Activity Report

Our activity was centered on the first two
components of the system: the Traffic Monitoring
System (TMS) and the Semaphore Regulator (SR). Our
job was fundamentally to formalize the requirements and
to plan the testing activity by generating functional test
cases. These activities naturally led to a validation of the
requirements: for instance, some test cases showed a few
undesirable behaviors, that were however compatible
with the specification.

A complete and detailed report of the activity and its
results is clearly out of the scope of the present paper;
in the following we just provide two illustrative
examples of requirements formalization, regarding
respectively the TMS and the SR, together with the
results of requirements validation and a description of
the generated cases.

4.1 TMS: requirements formalization

TMS analyzes the state (on or off) in time of two
magnetic loops laying below the asphalt surface, in the
same direction as the traffic flow. In what follows we
will call “loop A” and “loop B” the first and the second



loop in the direction of motion of the vehicles: the
distance among the two loops is chosen in such a way
that any vehicle traveling on the right direction will first
enter loop A then enter loop B, then leave loop A and
finally leave loop B. Also, the distance among the loops
is such that any vehicle traveling at a reasonable speed
will be detected when crossing one or both loops.
Notice that for streets with many lanes there is a pair of
loops for each lane. The system samples the state of the
loops periodically (every 10 msec). Every 100 msec the
collected data are analyzed and the results are: memorized
in a set of counters that indicate for how many ticks
(each tick corresponds to a sampling time of 10 msec) a
loop is on or off.

In this part of the specification we chose to maintain
the counters, describing them by means of the following
TRIO variables:

TonA: number of ticks the loop A was on
ToffA:  number of ticks the loop A was off
TonB: number of ticks the loop B was on
ToffB: number of ticks the loop B was off

If a state has a duration less than a given value
T_MIN, this state is interpreted as a transient
interference and therefore ignored; in this case the
system increases the value of the counter, as if state did
not change. Therefore the system detects a vehicle entry
on loop (or leaving) only after T_MIN ticks. When a
transition (from on to off in case of vehicle entry or
from off to on in the case of exit), is validated (which
happens after the loop state is constant for T_MIN
ticks), the value of the counters are memorized through
suitable program variables. These variables are
formalized in TRIO as follows.

TonAd: saved value of TonA

ToffAd: saved value of ToffA

TonBd: saved value of TonB

ToffBd: saved value of ToffB

Therefore, the program can compute for how many
ticks a loop was free or occupied by a vehicle. Moreover
the system monitors the time elapsed between the
vehicle entry (or leaving) on the first loop and the entry
(or leaving) of the same vehicle on the second loop, and
therefore it can compute the velocity, acceleration and
direction (on the right or worse direction) of the crossing
car. The system also estimates the following quantities:
length of the current vehicle, distance between a vehicle
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and the preceding one, number of vehicles (classified by
fength) up to present time.

The system also compares the states of the two
loops, to find possible faults: for example if a loop is
constantly off or on while the other one changes its
state (this is called loop cross check).

4.2 TMS: requirements validation

During the formalization and test case generation
activity, an error was found in the algorithm that
updates counters upon a change in loop state and
estimates vehicle direction. We detail here the part
regarding estimation of vehicle direction.

If the vehicle is crossing the semaphore in the wrong
direction, it first leaves the second loop B and then loop
A as shown in Figure 1.

loop A

TonAd

T_MIN

loop B

T_MIN

TonBd ToffB

Figure 1. Sequence of loop states for a vehicle in
wrong direction.

Let us consider how loop B detects vehicle direction.
Loop B checks the direction in the instant marked 1 in
Figure 1 (i.e., T_MIN ticks after the on/off transition).
If the vehicle is crossing the loops in wrong direction,
loop A still has not completed its detection. When loop
A counts a vehicle (which takes place at time marked 2,
T_MIN after the on/off transition for loop A), it saves
TonA in TonAd and sets TonA to zero. The criterion for
estimation of vehicle direction for loop B is expressed
by the TRIO formula:

ToffB =T_MIN A TonA #0 A TonAd =0 —
WrongDirectionB

Then loop A activates direction estimation at instant
2 of Figure 1. It determines that the vehicle is going in
the wrong direction if it left loop B while it still was on
loop A, i.e., if ToffB is more than T_MIN and less than



T_MIN+TonAd. In TRIO we express this condition as
follows.

ToffA = T_MIN A T_MIN < ToffB < T_MIN +TonAd
— WrongDirectionA

Now the abstract system requirement is that a vehicle
traveling in the wrong direction should be ignored,
therefore its passage should have no consequence on the
value of the counters. To ignore a vehicle passage, the
system adds to the off counter (equal to T_MIN) the
value of the on counter and the value of the off counter
saved when this vehicle entered on the loop.

The system undesired behavior derived from the fact
that if a vehicle crossed loop B in the wrong direction,
this change in the values of the counters was done 10¢
early, 1.e., at time instant 1. This change of values for
the loop B at time 1 was expressed as follows.

WrongDirectionB —

ToffB = T_MIN + ToffBd + TonBd

As a consequence the successive direction check on
loop A (at time 2) would find the counter of loop B
changed as if no vehicle crossed and could not recognize
the vehicle in wrong direction. This error was corrected
as follows: loop B counters are modified not at the time
of direction check for loop B but at the time of direction
check for loop A.

4,3 TMS: system verification

We outline here only the kinds of test cases we
produced. Our guideline in the generation was the
quality of the generated test cases, not their number: we
tested every critical aspect of the system. The generated
test cases included:

e vehicles at various speeds (lowest speed is in case of
a queue) and accelerations;

e noise of the loop state, of on-gff-on kind and off-on-
off kind;

e loop failures such as loop in constant on or off state
and loop in intermittent state (in such cases the cross
check is positive and one of the loop is momentarily
ignored);

e vehicles crossing in wrong direction;

o different traffic conditions: traffic queue, intense
traffic, normal traffic and sparse traffic.
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4.4 SR: requirements formalization

We specified the whole semaphore regulator, that in
the informal specification documents and in the
implementation was poorly modularized. So we tried to
achieve the modularization of the system in the formal
specification, grouping distinct concepts and processes.
Modularity of the formalization facilitates reasoning on
the requirements, which was essential for test case
generation. The system was divided into four
components.

Diagnosis: this monitors electric voltage and
current on the lights. In case of unexpected values, the
system starts yellow flashing. If the failure continues,
all lights are turned off.

Decision mode: starting from keyboard requests
and from central commands, this part decides how
semaphore must work: automatic (SR alternates red
lights and green lights in a full automatic way), all
lights red (in the emergency or startup phase), manual
(SR changes phases only upon command from the
keyboard), coordinated mode (when single SR is
synchronized with other SRs to obtain a green wave).

Duration generation: depending on current traffic
density, SR changes green duration of some direction, to
improve vehicle flow.

Phases timing: this part executes traffic plan,
calling phases in the right sequence (considering phase
requests and special phases for emergency and public
vehicles) and giving to each phase the right duration.
We report here on the formalization of phase
temporization algorithm, when a phase is with call,
extension and reservation.

The system executes a phase with call only if there
was a vehicle detection by an magnetic loop or a button
pressing by a pedestrian. A phase with extension has a
variable duration, increased generally by a vehicle
passage on a loop, whereby its duration can reach a
maximum time. In case this maximum time is reached
and the phase is with reservation, then it will be
executed in the successive cycle.

The diagram in Figure 2 shows the working of a
phase with call, extension and reservation as informally
specified in the initial document: tg counts the ticks
since the phase is active, and te counts the extension

time still to give. The temporal meaning of diagram is:



a phase ends if it is active since a time equal to the
maximum one (PhaseTime) or if no extension request
arrived for a time equal to ExtensionTime.

The task that updates counters runs every 100 msec,
so there is an obvious correspondence between values of
counters and elapsed time. However timing
specifications expressed in terms of values of the
counters would be rather cumbersome, intricate, and,
most important, strongly dependent on implementation
features. Therefore, we chose not to use counters to
express timings but rather we used TRIO operators thus

obtaining more readable and transparent specifications.

increase tg

v

decrease t,

reload t.:
t=ExtesionTime

-

£0 to next phase

L

reserv phase

continue

Figure 2. Flow-chart describing a phase with call,
extension, and reservation.

We show here the meaning of some predicates used in
the formalization:

Phase(i): i-th phase of the traffic plan is now active.
If a phase is with reservation, predicate Reservable(i) is
true too.

PhaseTime(x): x is the maximum actual phase
duration.

ExtensionTime(x): X is the time to add to duration if
there is an extension request.

Predicate PhaseChange() is true if actual phase ends,
Extend() is true if an extension request arrives.

We can thus express the change of the i-th phase with
the following TRIO axiom.
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Phase(i) A

Reservable(i) A

)

(

{ PhaseTime( pt) A
ExtensionTime(et) A

Lasted(— Extend( ), et) A
Lasted( Phase(i), pt)

< PhaseChange()

Reserved(i) in our specification is true if the i-th
phase is reserved. In TRIO reservation condition is:
PhaseChange() A
Phase(i) A
Reservable(i) A —> Until( Reserved(i), Phase(i))
ExtensionTime(et ) A l
Lasted(— Extend(),et) )

L

4.5 SR: requirements validation

Test cases showed an incorrect behavior of SR only
for phases with reservation. SR executed regularly a
phase reserved, but light configuration was wrong.

4.6 SR: system verification

We produced many test cases for every functionality
of SR. In every group of test cases we focused on a
single specification component, and we examined a
single critical aspect.

Light diagnosis: system working with very short
transient power failures; cases with unexpected presence
or lack of current and/or voltage on the lights; cases
with red (or green or yellow) lamps erroneously
enlightened; failures persistence and the consequent
release of teleswitches.

Mode
centralized), manual, with every red lamp, lighting of

decision: automatic mode (local or
the yellow lamps.

Phase duration generation: different traffic
situations, different cross topologies and different traffic
plans.

Phase timing: traffic plans composed of more
phases with or without call, extension, reservation.

5 Conclusions: evaluation and assessment

In evaluating the results of the activity and assessing
the usefulness of this industrial application of TRIO, we
should keep in mind that the situation where we



operated was far from ideal, both from the technical and
the organizational viewpoint. First, the specification
document we started with was mostly informal, without
any modular structure, extremely detailed (in fact many
system features had been over-specified by expressing
them in terms of implementation-oriented solutions
such as flowcharts, pseudo-algorithms. etc), while some
features were described ambiguously or in several,
mutually inconsistent ways. The available budget was
extremely tight, both in terms of economic resources
and available time (deadline of the project). The
validation and test planning activity were performed
during (or even after) the design and coding phases,
starting from a specification document that had not been
modified according to the changes in the system
functions occurred during design. Because of all the
above outlined limitations and inconveniences the
activity constituted a real challenge, and we were forced
to keep a very pragmatic attitude, aimed at solving the
numerous problems encountered in the fastest and most
economical way.

Despite these adversities, we can now claim that the
activity was successful. Such a claim is mostly based
on the fact that Italtel considers the obtained results very
useful and intends to apply the same methods to the
development of the next scheduled system component,
i.e., the Basin Regulator. Also NUS expressed a very
positive appreciation, and is interested to applying the
validation and verification method on a routine basis in
future development projects.

The validation activity allowed us to find several
inaccuracies in the original specification document,
while the testing experiments (which have not yet been
terminated but have been completed for the vast
majority) did not find significant errors in the software
code. Adjusting the specification (and, correspondingly,
the implementation) according to the errors and
inaccuracies found during the validation phase, was a
relatively expensive process; this is, in our view, the
major negative consequence of having started the
validation activity only when the design and
implementation were in an advanced state or even
completed. In fact this is just yet another demonstration
of the usefulness of performing validation in parallel
with specification, before any costly development takes
place, as advocated by [Kem85]. On the other hand, it
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must be pointed out that identifying and correcting such
errors would have been even more costly if the system
was already in operation!

We also note that the discovered errors influenced
only the accuracy of the developed system in measuring
the traffic flow or its effectiveness in optimizing the
vehicle circulation, not the safety requirements that are
obviously essential for a semaphore system. This is
because the safety-related checks were assigned (adopting
a rather judicious and prudent approach) to separate
modules that proved to be specified in a very simple and
transparent way and correctly implemented.

The fact that the testing activity was, up to now,
“unsuccessful” (i.e., it did not discover errors) was not
surprising to us, for two main reasons. First, the
personnel from NUS demonstrated during the whole
activity a high technical competence for anything
concerning the application domain and the programming
activity, so we expected them to code the software with
great attention and accuracy, and to test it thoroughly
according to traditional structural testing methodology.
Second, inaccuracies in the specification give rise to
errors that can be considered as “common mode”, in that
they cannot be detected by a formal verification activity,
which consists of comparing the implementation with
the specification; such inaccuracies can be detected only
through a validation activity, which allows the designer
to compare the requirements, as (formally) stated in the
specification, with the actual user needs. Finally, we
notice that the activity of test plan production is useful
even in the extreme case where the testing experiments
does not reveal any error in software code because, as we
point out in [MMMG95], quite often test case generation
allows the designer to simulate the system behavior, and
therefore provides additional powerful validation means.

The tools for validating histories of the system and
for generating test cases were used effectively: we
produced quite a large set of test cases and analyzed
several histories of the system for consistency with the
specification. We do not conceal, however, that the use
of the tools was at times both difficult and time
consuming. In particular, as we pointed out in
[F&M94, MMMO95], the interpretation algorithms on
which the tools are based, are at least exponential in the
size of the formulas (i.e., in the number of nested
connectives and quantifiers) so that, for large formulas,



the performance of the tools can be unacceptable. In an

ideal scenario (having sufficient time and resources) we

would have structured the specification using the
modular language TRIO* [M&S94], but in the present
case we chose to rewrite some subformulas to improve
efficiency in their interpretation. A typical applied
transformation changed a TRIO formula of the kind
VxVy..VZ(A(x) A B(y) A ... AC(z) > D(x, ¥, ..., 2))
(where each of the conjuncts in the premise of the
implication holds for just one or a few values of the
argument variable) into the following, equivalent
formula .
Yx(A(X) = VY(B(y) = ... » Vz(C(z) >

D(x, y, ..., 2))...))
that avoids the combinatorial explosion deriving from
the nested quantifications.

Another source of difficulties in the use of the tool
for test case generation, derived from the fact that often
the user must provide suggestions to guide the
interpretation process, otherwise the tool would spend
an undue amount of time in useless attempts to find
models for subformulas. In some extreme cases the user
found it more convenient to write manuaily test cases
(which are rather similar to histories) and then simply
check them with the history checker component of the
tool. From a mathematical viewpoint the test cases
generated in this manner were perfectly correct, but we
must admit that this situation is rather far from the ideal
procedure where the designer extracts test cases directly
from the specification.

The above remarks lead us to conclude that test case
generation must be performed by relatively highly
skilled personnel, having a good knowledge both of the
application domain and of the TRIO formal notation.

System analysis and verification is still a labor-
intensive activity that cannot be fully automated: it can
only be supported with semiautomatic tools whose
operation requires some ingenuity.

In the near future our efforts will be devoted to
improving the effectiveness of the tools supporting the
system simulation and test planning by
e removing the few remaining bugs;
¢ providing further functions;

e improving the user interface (including graphical
features, better interaction with the file system, tools
for managing first-order formulas);

e provide guidelines for a proficient use of the tool
(suggestions regarding typical formula structure and
described behavior).

From an organizational viewpoint, our principal
remark is that, in any system development of a
significant complexity, an increase in the effort spent in
the initial phases of requirements specification and
validation constitutes a profitable investment, since it
reduces the overall development cost. Italtel staff
recognizes that the activity centered on TRIO led to the
discovery of errors or inaccuracies whose detection and
correction would have been much more expensive if
carried out during maintenance. In the ESSI project
mentioned in the introduction [BC&96] the systematic
application of the TRIO-based method led to a shift in
resource allocation (with respect to more traditional
development methods) from the design and acceptance
phases to the requirements specification and validation
phases, according to what shown in Figure 3, yielding a
significant reduction of the overall costs, and improved
project management and control.

Traditional development

16%specification

4%validation

53%acceptance 11%design

16%coding

TRIO-based develpment

18%acceptance 34%specification

14%coding

7%design
27%validation

Figure 3. Shift in resource allocation from traditional to TRIO-based development.
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Probably for organizational reasons (strict deadlines,
resistance to profound change), Italtel is however not
willing to modify its development cycle introducing a
pervasive use of formal methods; it is simply willing,
in the development of the Basin Regulator component,
to perform requirements validation and test planning in
parallel with design and coding. Hopefully, they will
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