
Migrating combinatorial interaction
test modeling and generation to the web

Angelo Gargantini
DIGIP University of Bergamo

Bergamo, Italy
angelo.gargantini@unibg.it

Marco Radavelli
DIGIP University of Bergamo

Bergamo, Italy
marco.radavelli@unibg.it

Abstract—Combinatorial Interaction Testing (CIT) is an ef-
fective technique that, however, requires a good tool support
in order to be successfully applied. There are several tools
and applications for CIT, and most of them are distributed as
desktop applications or as special plugins of existing programs
and require some installation procedures to be used. Software
as a Service (SaaS) paradigm can be applied to CIT modeling
and test generation, proving several advantages to the tester.
There are already some attempts in this direction, but with some
shortcomings (little editing support, for example). In this paper,
we present CTWEDGE (Combinatorial Testing Web EDiting and
GEneration), which defines a language for CIT models in the
presence of constraints by using Xtext. It introduces a web service
for editing CIT specifications and it interfaces, through a server,
with other tools for test generation. CTWEDGE can improve the
user experience by providing a complete environment for CIT
modeling and generation on the web without sacrificing usability.

Index Terms—combinatorial interaction testing, Software as a
Service, domain specific language, web editor

I. INTRODUCTION

Combinatorial Interaction Testing (CIT) is becoming a
widespread practice for software testing. The presence of tools
for CIT is of fundamental importance because performing CIT
activities manually can be error prone and time consuming.
The site pairwise.org1 lists at least 43 tools supporting several
CIT activities while the paper [1] reviewed the CIT literature
and found around 20 tools. Most of the tools are classical
programs or plugins of existing programs/platforms. In all
these cases, the user has to download, install, and execute
the program on his/her machine. Some tools offer a GUI
interface, for example, for defining the models and run the
test generation, while others rely on other programs for some
activities (like PICTMaster, based on PICT [2], that works
entirely inside Microsoft Excel). In [3] we have presented a
plugin for the eclipse IDE that helps the user in writing CIT
models with constraints by leveraging all the expected features
of a modern IDE, and it generates combinatorial test suites by
using third party programs (like CASA or ACTS).

However, this classical approach poses some challenges.
First, the user must install the chosen CIT tool, which in turn
may require some dependencies, like java, or in case of plugin,
it requires the installation of another program or application

1See http://www.pairwise.org/tools.asp

like eclipse, excel and so on. Then the user must use his/her
machine for running the test generation algorithms. For expe-
rienced users with powerful machines they can administer, this
is not a real problem. However, for novice users with not so
powerful computer, or students that are just learning the CIT
principles, or software developers using computer they cannot
administer, this can become a cost to be considered and it may
be an obstacle for the use of CIT.

Second, from the point of view of tool developers, the
distribution of programs means that they have little or no
control on the software once is installed: when a bug is
discovered the developer has to fix the bug, publish a new
version of the tool and hope that the users will update their
software. Moreover, the developer has no idea about how the
software is used: what are the typical scenarios of use (big
or small models, for example), what are the features that
are mostly used (for example, what modeling features are
more used). Furthermore, it is difficult for tool developers to
apply a cost model able to reward their effort in developing
and deploying the CIT tool. Indeed, most of the tools are
given away for free by researchers supported by their own
organization.

A possible solution of these problems could be the offer
of CIT features as software as a service (SaaS). SaaS is
software that is accessed through Internet by using a classical
web browser. The SaaS software is actually hosted on the
vendors servers, and the customers log in and perform tasks as
necessary. The vendor is the one who is ultimately responsible
for hosting, upgrading and maintaining the program as needed.
There is an extensive literature about SaaS and the advantages
(together with limitations) are well known [4].

There are already experiences in using the web for CIT. For
instance, CTWeb Classic [5], CTWeb Plus [6], TestCover [7],
Hexawise [8], and PairWiser [9].

However, as we will discuss in the related work section,
each tool has its own specific language to define combinatorial
models, with its own predefined output formats and a (limited)
set of supported existing or in-house algorithms for test case
generation. Not all those tools are equally powerful or easy to
use, and many of them are commercial or require registration.

For this reason, starting from our experience with CIT-
LAB [3], we have worked on a web based application that
allows the user to write CIT models in a similar way he/she

http://www.pairwise.org/tools.asp

Model Phone
Parameters:

emailViewer : Boolean
textLines: [25 .. 30]
display : {16MC, 8MC, BW}

Fig. 1: A smartphone example

would do in a classical IDE and it offers test suite generation
by means of server using known and community evaluated test
generation algorithms. Our system, called CTWEDGE (Com-
binatorial Testing Web EDiting and GEneration), introduces
a rich language for combinatorial models, offers a powerful
web editor, and allows the user to generate the CIT test suites
on a server. The only software needed to use CTWEDGE is a
modern web browser.

The paper is organized as follows. In Sect. II we present the
modeling language (in an abstract way) we use to define CIT
models. In Sect. III we introduce our tool, its architecture, its
web editing capabilities, and the generator engine. A detailed
comparison with other similar web based tools is presented
in Sect. IV. Future works and possible directions of extension
are presented in Sect. V. Sect. VI concludes the paper.

II. A SIMPLE LANGUAGE FOR CIT MODELS

We have devised a simple textual language for CIT models
which is suitable to be used in web editors. It allows the
definition of parameters, each with its name and (finite)
domain, and it is based on our previous language defined for
CITLAB [3]. We allow the following parameter types:

1) Boolean with only two possible values true and false
(all lower or all upper case). The two boolean constants
are also considered of Boolean type.

2) Ranges that are integer intervals defined by their lower
bound l and upper bound u. With [l..u] we denote all
the integers between l and u included.

3) Enumerative that are a list of possible values between
{}. We are rather liberal about the elements and we
allow identifier starting also with a number, natural
numbers, and strings. For example, one could define a
enumerative values in this way:

values : {100, 1M, ”my name”, cit}

A simple example of combinatorial model with three pa-
rameters is shown in Fig. 1.

There are some semantic rules about the parameters and
their definitions, defined as follows:

1) The name of each parameter must be unique.
2) In Ranges, the lower bound l must be less than the

upper bound u.
3) The elements in each Enumerative must be distinct.

We allow two enumerative parameters to share some
elements, though.

A. Constraints

A distinctive feature of our langauge is the support of
modeling constraints among parameters. In most configurable
systems, constraints or dependencies exist between parame-
ters. Constraints may be introduced for several reasons, for
example, to model inconsistencies between certain hardware
components, limitations of the possible system configurations,
or simply design choices [10]. In our approach, tests that
do not satisfy the constraints are considered invalid and
do not need to be produced. For this reason, the presence
of constraints may reduce the number of tests of the final
test suite (but it may also increase it [10]). However, the
generation of tests considering constraints is generally more
challenging than the generation without them, and several test
generation techniques still do not support constraints, at least
not in a direct manner. In CTWEDGE we decided to focus more
on techniques supporting constraints.

In CTWEDGE, we adopt the language of propositional logic
(with the usual logical operators) with equality and arithmetic
to express constraints. To be more precise, we use proposi-
tional calculus, enriched by the arithmetic over the integers
and enumerative symbols. As operators, we admit the use of
equality and inequality for any variable, the usual Boolean
operators for Boolean terms, and the relational and arithmetic
operators for numeric terms. To be more precise, Table I
reports all the rules we have defined to check if a constraint
is semantically correct.

For example, we can write constraints in this way:
Model Phone
..
Constraints:
emailViewer => textLines > 28
emailViewer and display != 16MC => textLines > 28 + 3#

Many test suite generation tools provide a limited support
for constraints. For instance, AETG [11], [12] allows only
simple constraints of type if then else or requires. The
language of CTWEDGE is in this aspect more expressive, as it is
targeted to be more general than existing tools. In the specific
case of AETG, the translation of those templates into our logic
is straightforward. For example the if then else constraint
can be translated by two implications. Other tools [10] allow
constraints only in the form of forbidden combinations [13].
Our language is more general, as a forbidden tuple would be
translated as a not statement. For instance, a forbidden pair
emailViewer = false; display = 16MC would be represented
by the following constraint:

not (emailViewer = false and display = 16MC)

However, the explicit list of the forbidden combinations may
explode and it may become impractical and error-prone to
represent it. For example, if the model of mobile phones
presented in Fig. 1 had a constraint that

”A front video camera requires also a 16MC display”. This
constraint would be translated into two forbidden tuples:

(emailViewer = true, display = 8MC);

Expression Case Correct iff

e1 op e2 with op ∈ {=, 6=} → boolean

e2 op e1 with op ∈ {=, 6=} → boolean

e1 enumerative, e2 element e2 belongs to e1 elements
e1 enumerative, e2 enumerative e1 and e2 share at least one element
e1 range, e2 range e1 and e2 share at least one number
e1 range, e2 number always
e1 number, e2 number always
e1 boolean, e2 boolean always

e1 op e2 with op ∈ {<,≤, >,≥} → boolean

e2 op e1 with op ∈ {<,≤, >,≥} → boolean

e1 range, e2 range e1 and e2 share at least one number
e1 range, e2 number always
e1 number, e2 number always

e1 op e2 with op ∈ {∧,∨,→} → boolean

e2 op e1 with op ∈ {∧,∨,→} → boolean
e1 boolean, e2 boolean always

¬e → boolean e boolean always

e1 op e2 with op ∈ {+,−, ∗, /,%} → number

e1 number, e2 number e2 6= 0 if op = / or op = %
e1 range, e2 range always
e1 range, e2 number e2 6= 0 if op = / or op = %
e1 number, e2 range always

TABLE I: Rules of CTWEDGE Language Validator for Constraints

(emailViewer = true, display = BW);

However, the translation as constraint in general form would
be simply:

emailViewer => display = 16MC

which is more compact and more similar to the informal
requirement.

In our language semantics, a test case is valid only if
it does not contradict any constraint in the specification.
Others [14] distinguish between combinations to be avoided
if possible (soft constraints), and the forbidden combinations
(hard constraints), which must always be avoided (our case).

Other tools, like CASA [15], support only constraints in
conjunctive normal form, without arithmetic or relational
operators.

B. Xtext

There are countless ways to define a language together
with its parser. One emerging technique for Domain Specific
Language modeling is the use of Xtext [16]. By defining
the grammar of the DSL of choice by means of a Xtext
grammar, the language designer obtains a parser, APIs to
programmatically access models, a serializer and a smart
editor for it. The editor provides many features out-of-the-
box, such as syntax highlighting, content-assist, folding, jump-
to-declaration and reverse-reference lookup across multiple
files. We had already used Xtext for defining the language
in CITLAB [3]. Xtext support also the generation of a web
editor, as we present in the following section.

Grammar rules written in Xtext are very close to the
standard (E)BNF production rules. For instance, the main
grammar rule that defines the whole CIT model is defined
as follows:

CitModel:
'Model' name=ID
'Parameters' ':' (parameters+=Parameter)+
('Constraints' ':' (constraints+=Constraint)+)?

Fig. 2: CitModel rule diagram

Xtext can display the production rules by means of syntax
diagrams, also known as railroad diagrams. For example, the
rule presented before for CitModel is shown in Fig. 2.

Because Xtext is based on ANTLR, it does not allow left
recursive parser rules and parsing nested expressions is not
as simple as writing a EBNF rule. The CTWEDGE language
parses the constraints by defining the precedence among
operators implicitly by left-factoring expression definitions.
For example, in order to parse the AND operators before the
OR operators, CTWEDGE introduces the following two rules
that are not left recursive:

OrExpression returns Expression:
AndExpression ({OrExpression.left=current}

OR_OPERATOR (right=AndExpression))*;

AndExpression returns Expression:
EqualExpression ({AndExpression.left=current}

AND_OPERATOR (right=EqualExpression))*;

The definitions of semantic constraints in Xtext is performed
by user-defined validator classes written in Java or in Xtend
containing methods annotated by @Check. For instance, to
check that in the definition of any range domain of our CIT
models the upper bound is greater than the lower bound, we
have introduced the following checking method:

@Check
def checkRangeIsCorrect(Range range) {
if (range.getBegin() >= range.getEnd())

error("The second term must be greater ...");
}

III. CTWEDGE: CT WEB EDITOR AND GENERATOR

In this section, we present our tool CTWEDGE. As we can
see in Fig. 3, the tool is composed by a language definition
component (with its Xtext parser and validator), a web-based

Fig. 3: CTWEDGE architecture

editor for the CTWEDGE language, with some options for test
generation and a test suite visualizer and exporter, and a test
suite generator that exploits third-party test generation tools.

The tool is written in Java and Xtext, and can be deployed
on any Web-application server, such as Apache Tomcat. It is
publicly available at: http://foselab.unibg.it/ctwedge/.

A. Combinatorial Testing Web Editor

In order to implement a web-based editor, we can leverage
the Xtext framework, since Xtext starting from version 2.9
offers an interface for integration of text editors in web
applications. The text editors are implemented in JavaScript,
and language-related services such as code completion are
realized through HTTP requests to a server-side component.

The Xtext web-based editor provides several features, like
content assist to help the user to complete the models, valida-
tion to check the correctness, syntax coloring, and formatting.

The CTWEDGE web editor is based on Ace (Ajax.org
Cloud9 Editor)2, but other web editors (like Orion and
CodeMirror) are available. Xtext does not yet provide support
for the recently standardized Language Server Protocol [17],
which we plan to include in our tool as a future work. A
screenshot of the CTWEDGE web editor is shown in Fig. 4.
The web editor provides an immediate feedback while writing
by means of syntax highlighting, auto completion, and errors
markings.

The validation of the model is performed run-time while the
user writes it. If the validator finds an error in the model, it
generates an error message. The nature of the error is indicated
in the pop-up box appearing when positioning the cursor over
the error sign, and the point in which the error occurs is
marked in the editor. Fig. 5 shows how model validation errors
are displayed to the test engineer.

The editor allows to load predefined examples of combina-
torial models, selected from literature [18] and converted into
CTWEDGE language format (with extension .ctw).

Graphical components (buttons and option selectors) are
built using the JavaScript frameworks JQuery3 and Bootstrap4.

2See https://ace.c9.io/
3JQuery: https://jquery.com/
4Bootstrap: https://getbootstrap.com/

Parameter type description values

model String the combinatorial
model

as written and vali-
dated by the editor
(see Sec. II)

strength Int the combinatorial in-
teraction strength

any integer above 1
(default is 2: pair-
wise)

generator Enum the tool to be used [”acts”, ”casa”] (so
far)

ignConstr Boolean if constraints should
be ignored in test gen-
eration

[”true”, ”false”] (de-
fault is false)

TABLE II: Request parameters to CTWEDGE generation ser-
vice

The web application is fully compatible also with mobile
devices (Android and iOS), from any recent Web browser with
JavaScript enabled.

B. Test generator web service

The function of actually generating a test suite from the
test model and option parameter is web-served and performed
by the test generation service which is the component of
CTWEDGE. The test generation service is composed by two
modules: a REST5 service and a language translator.

The REST service handles input model and option parame-
ters for the generation, calls the generators from which it gets
back the tests and it is responsible to deliver them to the web
browser.

The test generator acts as a driver between CTWEDGE and
the various third party combinatorial test generation tools,
which are usually accessible via their own APIs, or via com-
mand line. The test generator exports the combinatorial model
along with the generator options, into the the specific language
of the external tool, or directly into the tool’s APIs. Then, it
waits for the generator to compute the test suite, and once
ready, it passes it back to the REST service. If necessary, the
generator also maps any parameter values back to the original
CTWEDGE model format. Each external program needs its own
translator.

The REST service accepts an HTTP GET or POST request
with parameters as described in Tab. II. For sake of brevity, an
example URL request to the web generator service is shown
in Fig. 6.

So far, we interfaced CTWEDGE with ACTS [19] and
CASA [15]. ACTS is accessed via it internal APIs whereas
CASA is called via command line.

The resulting test suite is returned in CSV6 format. The
header line contains the parameter names, and each following
line represents a single test, with parameter values. The web
front-end allows to download CSV file to further local use,
and shows the test suite in the browser by converting it into
an HTML table. Conversion is straightforward and done client-
side via Javascript.

5REST: Representational State Transfer
6CSV: Comma Separated Values

http://foselab.unibg.it/ctwedge/
https://ace.c9.io/
https://jquery.com/
https://getbootstrap.com/

Fig. 4: CTWEDGE web editor

(a) Validation of Range parameter

(b) Code recommender. Unknown symbol error.

(c) Validation of relational operations

Fig. 5: Examples of CTWEDGE validation errors

http://foselab.unibg.it/ctwedge.generator?
↪→ model=Model%20Phone%20Parameter:%20...>
↪→ 28%20#&strength=2&generator=acts&
↪→ ignConstr=false

Fig. 6: Generator URL example

Fig. 7: Message of operations not supported in constraints for
CASA generator tool

Arithmetic operations and relational operators (>, <, ≤, ≥)
are not natively supported by CASA, and in presence of such
constraints, an error is reported to the user, as in Fig. 7.

The HTML table showing the generated test cases is located
below the editor on the same window. This location is less
invasive than a brand new tab as it does not hide or replace
the current combinatorial model in the editor. Despite it is not
immediately visible to the user, who may think the output is
hidden, we believe that it preserving the access to the current
screen is the most important aspect to be preserved.

The generator is called by the editor by AJAX, with an
asynchronous XmlHttpRequest.

A screenshot of how the generated test suite is presented to
the user is shown in Fig. 8. It is shown as plain HTML table,
with the possibility to download the data as CSV.

IV. RELATED WORK

With the success of the SaaS pattern, web-based tools
have rapidly gained popularity due to their portability and
ease of use. There exist some web-based services also for
combinatorial test case generation, each with its own pecu-
liarities. SaaS tools, however, still represents a small number
of all the available tools for test case generation: IDE plugins
and desktop applications represent almost the totality of the

Fig. 8: CTWEDGE visualization of the generated test suite

current tools. We looked for tools from the pairwise.org7 and
softwaretesters.net8 tool catalogs, and from the web, to the
best of our searching skills.

We compare the following five SaaS for CIT, listed in Tab.
III:

7See http://www.pairwise.org/tools.asp
8See https://softwaretesters.net/zbxe/index.php?mid=downloadtool&

category=4258006&sort index=readed count&order type=desc

Tool URL Documentation

TestCover https://testcover.com https://testcover.com/sub/
instructions.php (visible

after registration)

CTWebClassic http://alarcostest.esi.uclm.
es/CombTestWeb/
combinatorial.jsp

http://alarcostest.esi.uclm.
es/CombTestWeb/stuff/

usersManual.pdf

CTWebPlus http://www.
testcasegeneration.com or

http://www.ctwebplus.com/

http://www.ctwebplus.com/
stuff/userManual.pdf

HexaWise https://hexawise.com/ https://hexawise.com/
Hexawise Introduction.pdf

PairWiser https:
//inductive.no/pairwiser/

https://inductive.no/
pairwiser/knowledge-base/

TABLE III: Tool resource links

• TestCover [7] is a commercial web-based combinatorial
test case generator supported by Testcover.com, LLC,
founded in 2003. The tool was also presented at IWCT
2016 [20].

• CTWeb Classic [5] is a free online tool for combinatorial
testing and state machine test case generation, developed
at University of Castilla-La Mancha (Spain).

• CTWeb Plus [6], an academic combinatorial test gener-
ation tool developed as improvement of CTWeb Classic.
CTWeb Plus is now commercially supported.

• HexaWise [8], a commercial combinatorial test case
editor and generator, launched in 2009 by Hexawise, Inc.

• PairWiser [9], a commercial web-based tool provided
by Inductive AS. The online version was shut down
January 15th, 2018. After that date, only the standalone
application, for own-server installation, is available.

All tools are well documented, with examples and tutorials.
Links of on-line editors and official documentation resources
of these tools are shown in Tab. III

To compare the SaaS tools among them and w.r.t.
CTWEDGE, we consider the following aspects, that we believe
to be among the most relevant for a test engineer interested
in using a web-based combinatorial test generation tool:

• Language. We look into the expressiveness of the ac-
cepted format for the combinatorial model in input. This
evaluation includes:

– Parameter definition: how the parameter types and
values can be defined. For instance, a tool may
support Boolean parameters or ranges of integers to
express an enumerative made of all integers between
two numbers.

– Constraint format: if the constraints can be expressed
as free combinations of logical and arithmetic oper-
ations among parameters, or have special formats,
such as a set of forbidden tuples, a set of implica-
tions, or a set of if-then-else conditions.

– Numeric Operations: if constant numbers and basic
numeric operations (+, -, *, /) are allowed in the
constraints and/or in the generated code of test cases.

http://www.pairwise.org/tools.asp
https://softwaretesters.net/zbxe/index.php?mid=downloadtool&category=4258006&sort_index=readed_count&order_type=desc
https://softwaretesters.net/zbxe/index.php?mid=downloadtool&category=4258006&sort_index=readed_count&order_type=desc
https://testcover.com
https://testcover.com/sub/instructions.php
https://testcover.com/sub/instructions.php
http://alarcostest.esi.uclm.es/CombTestWeb/combinatorial.jsp
http://alarcostest.esi.uclm.es/CombTestWeb/combinatorial.jsp
http://alarcostest.esi.uclm.es/CombTestWeb/combinatorial.jsp
http://alarcostest.esi.uclm.es/CombTestWeb/stuff/usersManual.pdf
http://alarcostest.esi.uclm.es/CombTestWeb/stuff/usersManual.pdf
http://alarcostest.esi.uclm.es/CombTestWeb/stuff/usersManual.pdf
http://www.testcasegeneration.com
http://www.testcasegeneration.com
http://www.ctwebplus.com/
http://www.ctwebplus.com/stuff/userManual.pdf
http://www.ctwebplus.com/stuff/userManual.pdf
https://hexawise.com/
https://hexawise.com/Hexawise_Introduction.pdf
https://hexawise.com/Hexawise_Introduction.pdf
https://inductive.no/pairwiser/
https://inductive.no/pairwiser/
https://inductive.no/pairwiser/knowledge-base/
https://inductive.no/pairwiser/knowledge-base/

TestCover [7] CTWeb Classic [5] CTWeb Plus [6] HexaWise [8] PairWiser [9] CTWEDGE

Language
Parameter Definition Enumerative Enumerative Enumerative Enumerative,

Ranges (via value
expansion)

Enumerative Boolean,
Enumerative,

Ranges

Constraints format in DPB notation: via
blocks (i.e., sets of

allowed
combinations)

as if-then-else AND, OR, Else
operators, not nested

invalid pairs
(if..then..)

guided by select
boxes with rich

choice of operators

arbitrary formula

Numeric operators 3(in PHP functions) 7 3 3 7 3

State Machine support 3 3 3 7 7 7

Editing
Web-based editor text area text fields and

buttons + file upload
text fields, buttons,

drawing area
text fields and

buttons
text fields and

buttons
text area

Model Import/Export 3(Copy&Paste as
text)

3 7 7 7 3(Copy&Paste as
text)

Helping facilities 7 button-guided (no
facilities to build

input file to upload)

button-guided button-guided button-guided content-assist,
syntax highlight,

in-line error
reporting

Example Models 3 3 to be rebuilt from
documentation file,

not one-click
loadable

3 in the
documentation

3

Generation

n-wise pairwise pairwise pairwise up to 6-way
interaction + mixed

strength

up to 3-way
interaction + mixed

strength

3

Supported generators All-pairs AETG, PROW, All
combinations, Each

choice, Random,
Bacteriologic

AETG, Pairwise,
All-combinations,

Each-choice, Comb,
Random

not specified not specified ACTS, CASA

Export formats HTML, WSDL
interface

HTML, CSV HTML HTML, Excel, CSV,
OPML

Excel, Jira issues CSV, HTML

Generate test scripts 3(for Selenium) 3(custom) 3(custom) 7 3(custom) 7

Coverage visualization 3 7 7 3 3 7

Other information

License Commercial Free Commercial Commercial Commercial Free

Registration subscription required optional subscription required subscription required own-server
installation

7

Online storage 3 7 3 3 3(on own server) 7

Additional notes Functions in PHP
into constraints.

Also accessible via
WSDL interface.

Registration required
for models with

more than 5
parameters

Features a drawing
area to represent

states and transition
of a state machine.
The combinatorial
model must be in
the form of a state

machine.

Has also a chart
showing the

interaction coverage
after each test

Pairwiser online was
shut down January
15, 2018. Available
only for own-server
installation. Allows

to specify
combinations to

include in test suite.

–

TABLE IV: A comparison with other SaaS for CT

– State Machine support: if the language supports an
easy input of state machines, to generate combina-
torial tests for their execution.

• Editing. We evaluate how simple is for the test-engineer
to input the combinatorial model into the tool. This
category includes the following aspects:

– Web-based editor structure: how is the GUI of the

web editor for writing the combinatorial model to
be given in input to the tool; for example, if it is
made by a single text area, or some buttons and text
fields. Some tools use a single text area for the whole
model, whereas some other tools use text inputs for
individual parameters, reducing the need for parsing
and text-highlighting.

– Import and export models: how the models can

be exported to the file system and imported. For
example, a tool may allow importing a text file
written with another editor.

– Helping facilities: how the test engineer is guided
in the input of the model in the web editor; for
example with syntax highlighting, content assist, in-
line error reporting, warning messages, or single text
input fields to fill, and self-explanatory buttons to
click.

– Predefined example models: if there are examples of
combinatorial models that can be easily loaded into
the tool and executed to generate a test suite.

• Generation. We evaluate how the test suite generation is
performed and how the output is presented to the user.
This category includes the following aspects:

– n-wise: which interaction strengths of the generated
test suite are allowed

– supported generators: which existing combinatorial
test generation algorithms are supported

– export formats: in which formats the output is made
available to the test-engineer

– Test-script generation: if there is a mechanism to al-
low the generated test vectors to be directly inserted
into test cases written in custom code.

– Coverage visualization: if there is indication (textual
or with charts) of the coverage reached after the
execution of each test in the generated test suite.

• Other information. We consider aspects about the ac-
cessibility of the tool, and related features. We look the
following aspects

– License: if commercial, free, or open source.
– Registration: if it is mandatory, optional or not made

available.
– Online storage: if any data (input models, or output

test suites) can be stored online.
– Additional notes: any other additional information

that we consider worth being noted.
Table IV compares the five tools and CTWEDGE according

to all these aspects.
Concerning the web editor, while TestCover uses, as

CTWEDGE, a single text area for combinatorial model input,
all the others (CTWeb Classic, CTWeb Plus, HexaWise and
PairWiser) feature a composer of combinatorial model guided
by multiple selectors, text fields, and buttons. This approach
of using buttons and text input fields, has the advantage of
a quicker learning curve, and it does not need a language
grammar, nor a parser, nor the helping facilities typical of
text-based editors, such as auto-completion and syntax high-
lighting. However, it is not always the preferable way to input
combinatorial models in the tool. In fact, the availability of
a domain-specific language makes it possible to quickly and
easily write, edit and copy-paste combinatorial input models,
and export, translate or port them to other platforms and tools.

CTWeb Classic comes both with a guided editor and a form
to upload a text file containing the input of the tool, written

in a domain specific language. Regarding the textual way
of proving input for test case generation, however, although
CTWeb Classic and TestCover have a good documentation,
they have no facilities to help the test engineer in writing
models. CTWeb Classic does not have an online editor for its
own language (as it comes with just a file upload button), and
TestCover has a simple text area, lacking support for auto-
completion, syntax-highlighting and all the features proper of
an IDE.

All the tried tools offer support for test case generation with
constraints, to be specified in their specific formats. TestCover
even allows to specify custom functions - in PHP code - to
express constraints [20].

TestCover and CTWeb (Classic and Plus) offer pairwise
test case generation, that is very often the chosen interaction
strength by test-engineers. For some applications, however,
higher interaction strength is preferred. HexaWise supports up
to 6-way interaction strength, while PairWiser up to 3-way.
CTWEDGE is, instead, the only tool that does not pose limi-
tation (in theory) on the interaction strength of the test suite.
However, HexaWise and PairWiser come with the additional
possibility to specify a mixed test suite strength, i.e., values of
each single parameter may be covered with different strength.

Still none of the tools supports the Microsoft Language
Server Protocol [17], a new common open protocol for lan-
guage servers which provides programming language-specific
features to source code editors or integrated development
environments (IDEs). The main goal of the standard is to
support programming in any given language independently of
editors or IDEs. We plan to extend CTWEDGE in order to
support LSP.

V. FUTURE WORK

There are several directions in which we plan to work.
a) Language extensions: Adding expressive power to the

language for combinatorial models, in particular to express test
seeds and goals, represents a direction for future work. Test
seeds allow a tester to force the inclusion of certain test cases
in the generated test suite [14]. Test seeds may be complete
or partial. Test goals are extra-constraints: relations among
parameters to be satisfied by at least one test in the generated
test suites.

Some CIT approaches [18] introduce weights for parameter
values. Weights reflect the importance of different values for
a given parameter. The user can express further requirements
over the solution involving weights. Even if the same con-
straints may be expressed in our language, it may become
impractical. We plan to extend the CTWEDGE language in
order to include user defined functions depending on parameter
values. A possible function could be the weight of a parameter.
Constraints and test goals could use such functions to express
complex testing requirements.

b) Combinatorial model editor: To make the transition to
CTWEDGE easier, a possible direction for future improvement
is an importer that translates models written in other generator
formats, into CTWEDGE language format.

Secondly, although CTWEDGE already follows the SaaS
approach, there are still several features that could be added
in order to offer new cloud-based services. The web site
could offer a storage and persistence service, and the logged
user could save his/her models on the CTWEDGE server and
later recall the saved files and export/import them in other
formats. The CTWEDGE could offer analysis services, like
those presented in [21], able to find modeling faults. The
user could use such techniques to check that the constraints
are consistent, that there is no constraint implied by other
constraints, and that the parameters and their values are really
necessary. Also coverage measurement and analysis on the
generated tests could be useful in order to check that they
actually cover all the testing requirements.

Another future direction is the visualization of the individual
t-tuples, as covered by each test in the test suite.

c) Test case generation: Another direction for future
work regards test case generation. The server is configured to
run CTWEDGE generator in a synchronous mode: the generator
starts producing the test suite immediately, trying to serve all
the requests. The server could have performance issues due
to overloading in case for example there are many requests
with large models. The web service could be improved by
attaching a process scheduler and a load balancer. Test suite
generation becomes therefore asynchronous also on the server,
which queues the requests and makes the test suites available
as soon as they are generated.

d) External generation tool support: An additional fea-
ture direction consists in the expansion of the support for
test case generators, as PROW [22], PICT [23], HSST9 [24],
Medici [25], as well as an expansion on the customizations
of each selected test generator tool, such as the selection
of the test generation algorithm inside ACTS: IPOG [26],
IPOG-D [26], IPOG-F [27], IPOG-F2 [27] and PaintBall [28].
The possibility to download the translated input file along
with the executable command parameters for each of the
generators allows further customization and therefore can be
an interesting future extension of the tool.

e) Offline extensions: Combinatorial test case generation
is used as a part of an automated process for application
testing. Thus running the test generation tool off-line is
needed, in certain scenarios, to ease interfacing with automated
tools or with IDEs during development process. We therefore
plan to release a version of the CTWEDGE editor as Eclipse
plugin. Xtext, already generates an eclipse-based development
environment providing editing experience known from modern
IDEs, featuring a content assist, quick fixes, a project wizard,
template proposal, outline view, hyperlinking, and syntax
coloring.

VI. CONCLUSION

Generation of combinatorial test suites via web offers great
advantages w.r.t. classical desktop applications. It is nowadays
supported by a pool of tools, both open source and commer-
cial. However, to the best of our knowledge, none of them

9HSST: Heuristic based on solution space tree

has an integrated web editor support and a complete support
of constraints. To work, they have their own language, with
often just examples as unique description, and expect the user
to write a file locally before uploading to the web-based tool.
This process requires the test engineer to use another tool, may
it be just a stand-alone text editor, with no auto-completion for
that particular language, or a custom stand-alone editor with
some grade of code recommendation.

To offer a complete SaaS environment for CIT, we have
developed and deployed CTWEDGE. CTWEDGE was de-
signed with three principles in mind: (1) installation-free
and download-free, (2) ease of use, and (3) extensibility to
support more generators. By using Xtext, we have defined a
simple textual language which includes also the possibility
to define complex constraints. Thanks to Xtext, a web editor
can be easily deployed and it offers classical editing features
like syntax highlighting and coloring, syntax validation, auto
completion, and error messages. We have also developed a
REST service that is able to generate CIT test suites exploiting
third-party test generator programs. This test generators runs
on the server and it can be called from the editor, thus
providing a complete SaaS experience to the tester.

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv, vol. 43, no. 2, p. 11, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1883612.1883618

[2] J. Czerwonka, “Pairwise testing in real world,” in 24th Pacific Northwest
Software Quality Conference, vol. 82, 2006.

[3] A. Gargantini and P. Vavassori, “Citlab: a laboratory for combinatorial
interaction testing,” in Workshop on Combinatorial Testing (CT) In
conjunction with International Conference on Software Testing (ICST
2012, April 17-21). Montreal, Canada: IEEE Computer Society, 2012,
pp. 559–568.

[4] I. Menken, SaaS - The Complete Cornerstone Guide to Software As a
Service Best Practices Concepts, Terms, and Techniques for Successfully
Planning, Implementing and Managing SaaS Solutions. London, UK,
UK: Emereo Pty Ltd, 2008.

[5] M. P. Usaola and B. P. Lamancha, “A framework and a web
implementation for combinatorial testing,” Informe técnico, University
of Castilla-La Mancha, Tech. Rep., 2010. [Online]. Available:
http://ctweb.abstracta.com.uy/stuff/wpCombinatorial.pdf

[6] [Online]. Available: http://www.ctwebplus.com/
[7] [Online]. Available: http://testcover.com/
[8] [Online]. Available: https://hexawise.com/
[9] [Online]. Available: https://inductive.no/pairwiser/

[10] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of highly-
configurable systems in the presence of constraints,” in Proceedings of
the 2007 International Symposium on Software Testing and Analysis,
ser. ISSTA ’07. New York, NY, USA: ACM, 2007, pp. 129–139.
[Online]. Available: http://doi.acm.org/10.1145/1273463.1273482

[11] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The aetg
system: an approach to testing based on combinatorial design,” IEEE
Transactions on Software Engineering, vol. 23, no. 7, pp. 437–444, Jul
1997.

[12] C. Lott, A. Jain, and S. Dalal, “Modeling requirements for
combinatorial software testing,” in Proceedings of the 1st International
Workshop on Advances in Model-based Testing, ser. A-MOST ’05.
New York, NY, USA: ACM, 2005, pp. 1–7. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083281

[13] M. C. Golumbic and I. B.-A. Hartman, Graph Theory, Combinatorics
and Algorithms: Interdisciplinary Applications. Springer Publishing
Company, Incorporated, 2011.

http://doi.acm.org/10.1145/1883612.1883618
http://ctweb.abstracta.com.uy/stuff/wpCombinatorial.pdf
http://www.ctwebplus.com/
http://testcover.com/
https://hexawise.com/
https://inductive.no/pairwiser/
http://doi.acm.org/10.1145/1273463.1273482
http://doi.acm.org/10.1145/1082983.1083281

[14] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing
for pair-wise coverage with seeding and constraints,” Information
and Software Technology, vol. 48, no. 10, pp. 960 – 970,
2006, advances in Model-based Testing. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0950584906000401

[15] “CASA: Covering arrays by simulated annealing.” [Online]. Available:
http://cse.unl.edu/citportal/tools/casa/

[16] M. Eysholdt and H. Behrens, “Xtext: Implement your language
faster than the quick and dirty way,” in Proceedings of the ACM
International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, ser. OOPSLA ’10.
New York, NY, USA: ACM, 2010, pp. 307–309. [Online]. Available:
http://doi.acm.org/10.1145/1869542.1869625

[17] [Online]. Available: https://github.com/Microsoft/
language-server-protocol

[18] I. Segall, R. Tzoref-Brill, and E. Farchi, “Using binary decision
diagrams for combinatorial test design,” in Proceedings of the
2011 International Symposium on Software Testing and Analysis
- ISSTA '11. ACM Press, 2011, p. 254. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=2001420.2001451

[19] “Advanced Combinatorial Testing System (ACTS).” [Online]. Available:
http://csrc.nist.gov/groups/SNS/acts/

[20] G. B. Sherwood, “Embedded functions for constraints and variable
strength in combinatorial testing,” in Software Testing, Verification
and Validation Workshops (ICSTW), 2016 IEEE Ninth International
Conference on. IEEE, 2016, pp. 65–74.

[21] P. Arcaini, A. Gargantini, and P. Vavassori, “Validation of models
and tests for constrained combinatorial interaction testing,” in The
3rd International Workshop on Combinatorial Testing (IWCT 2014) In
conjunction with IEEE International Conference on Software Testing
(ICST 2014, March 31 - April 4), 2014, pp. 98–107.

[22] B. P. Lamancha, M. Polo, and M. Piattini, “PROW: A pairwise
algorithm with constRaints, order and weight,” J. Syst. Softw.,
vol. 99, no. C, pp. 1–19, Jan. 2015. [Online]. Available: http:
//dx.doi.org/10.1016/j.jss.2014.08.005

[23] [Online]. Available: https://osdn.net/projects/pictmaster/
[24] C. Nie, B. Xu, L. Shi, and Z. Wang, “A new heuristic for test suite

generation for pair-wise testing,” in Proceedings of the Eighteenth Inter-
national Conference on Software Engineering & Knowledge Engineering
(SEKE’2006), San Francisco, CA, USA, July 5-7, 2006, 2006, pp. 517–
521.

[25] A. Gargantini and P. Vavassori, Efficient Combinatorial Test
Generation Based on Multivalued Decision Diagrams. Cham:
Springer International Publishing, 2014, pp. 220–235. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-13338-6 17

[26] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “Ipog: A
general strategy for t-way software testing,” in 14th Annual IEEE Inter-
national Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS’07), March 2007, pp. 549–556.

[27] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Refining
the in-parameter-order strategy for constructing covering arrays,” Jour-
nal of Research of the National Institute of Standards and Technology,
vol. 113, no. 5, p. 287, 2008.

[28] P. Ammann and J. Offutt, “Using formal methods to derive test frames
in category-partition testing,” in Computer Assurance, 1994. COMPASS
’94 Safety, Reliability, Fault Tolerance, Concurrency and Real Time,
Security. Proceedings of the Ninth Annual Conference on, Jun 1994, pp.
69–79.

http://www.sciencedirect.com/science/article/pii/S0950584906000401
http://www.sciencedirect.com/science/article/pii/S0950584906000401
http://cse.unl.edu/citportal/tools/casa/
http://doi.acm.org/10.1145/1869542.1869625
https://github.com/Microsoft/language-server-protocol
https://github.com/Microsoft/language-server-protocol
http://portal.acm.org/citation.cfm?doid=2001420.2001451
http://csrc.nist.gov/groups/SNS/acts/
http://dx.doi.org/10.1016/j.jss.2014.08.005
http://dx.doi.org/10.1016/j.jss.2014.08.005
https://osdn.net/projects/pictmaster/
http://dx.doi.org/10.1007/978-3-319-13338-6_17

	Introduction
	A simple language for CIT models
	Constraints
	Xtext

	ctwedge: CT Web Editor and Generator
	Combinatorial Testing Web Editor
	Test generator web service

	Related Work
	Future Work
	Conclusion
	References

