
Bergamo, September 28 -29, 2009
Università degli Studi di Bergamo

Eclipse-IT 2009
4th Italian Workshop on Eclipse Technologies

Angelo Gargantini (Ed)

E
c

li
p

s
e

-I
T
 2

0
0

9

Eclipse-IT 2009
4th Italian Workshop on Eclipse Technologies

Bergamo, September 28-29, 2009
Università degli Studi di Bergamo

Angelo Gargantini (Ed.)

Proceedings

Eclipse Italian Community
http://eclipse.dis.unina.it/
Conference web site:
http://eit09.unibg.it/

Printed in Bergamo, Italy
September 2009
ISBN: 978-88-904388-0-6

This volume is edited by
Angelo Gargantini
Dipartimento di Ingegneria dell’Informazione e
Metodi Matematici
Università degli Studi di Bergamo
viale Marconi, 5 - 24044 Dalmine BG - Italia
http://cs.unibg.it/gargantini/
email: angelo.gargantini@unibg.it

Cover designed by Emanuele Piana

Preface

This volume contains the papers presented at EclipseIT 09, the 4th Italian Work-
shop on Eclipse Technologies held on September 28th and 29th in Bergamo. The
previous three EclipseIT workshops took place in Rome (2006), Naples (2007),
and Bari (2008).

The goal of EclipseIT is to bring together industry and academia, students
and professors, researchers and practitioners interested in the Eclipse technolo-
gies, their use and their possible future developments. Eclipse is a very good
example of a technology in which the open source community and the busi-
ness community, universities and companies can work together to bring better
products to their students and to their costumers.

Indeed, Eclipse was initially designed as an integrated development envi-
ronment (IDE) for Java or at most for object-oriented application development.
Today Eclipse is an open source community whose projects are focused on build-
ing an open development platform comprised of extensible frameworks, tools
and runtimes for building, deploying and managing software across its lifecycle.
Around Eclipse there is a live community which continuously works in experi-
menting, extending, and supporting the Eclipse platform.

This year workshop, which gathers the whole (from South to North) Italian
Eclipse community, reflects the viability and richness of the community. We had
more than 70 registered participants from every part of Italy. There were 10
submissions of research papers and 8 of them were accepted for publication in
the research track. We had a student track with 6 presentations and demos. This
year workshop has also featured an industrial track with 9 presentations from
industrial partners and final users of Eclipse. For the first year, we accepted also
contributions about the Jazz technology.

This year program also includes 2 invited talks. The first one is delivered
by Ralph Mueller (Director of Eclipse Foundation, Ecosystem - Europe) who
presents his view on Open source for Business. The second one is given by
Ferdinando Gorga (IBM Rational Italy) and Scott Rich (Jazz Foundation PMC
Lead) and it is a tutorial on Jazz: the modern platform for software engineering
tools.

I would like to thank the authors who submitted their papers, the members
of the Program Committee and the additional reviewers for their very precise
reviews and the entire Eclipse Italian Community chaired by Paolo Maresca who
supported this workshop. Special thanks go to the sponsors of this event, IBM
Italy with Carla Milani, the Faculty of Engineering and the Department of In-
formation Technology and Mathematical Methods of the University of Bergamo,
the Eclipse Foundation, and Opera21. I thank the student track chair, Stefano
Paraboschi, who carefully scrutinized all the student papers, and the industrial
track chair Domenico Squillace, who was able to advertise this event among in-
dustrial users and developers. Thanks also to Patrizia Scandurra and Elvinia
Riccobene who helped me in organizing this year workshop.

Bergamo, September 2009 Angelo Gargantini

Conference Organization

Program Chairs

Workshop Chair Angelo Gargantini, Università di Bergamo
Publicity Chair Paolo Maresca, Università Federico II di Napoli
Student Track Chair Stefano Paraboschi, Università di Bergamo
Industrial Track Chair Domenico Squillace, IBM Italia

Programme Committee

Marco Aimar Alessandro Assab
Luciano Baresi Marco Brambilla
Fabio Calefato Andrea Calvagna
Andrea De Lucia Arcelli Francesca
Giacomo Franco Rosario Gangemi
Filippo Lanubile Enrico Oliva
Alfonso Pierantonio Elvinia Riccobene
Patrizia Scandurra Giuseppe Scanniello
Vittorio Scarano Carmine Seraponte
Domenico Squillace Rodolfo Totaro

Local Organization

Patrizia Scandurra
Paolo Arcaini

External Reviewers

Davide Di Ruscio
Carmine Gravino

Sponsors

IBM Italia

Università degli Studi di Bergamo

Eclipse Foundation

Opera21

Dipartimento di Ingegneria
dell’Informazione e Metodi Matematici

Table of Contents

Session 1. Invited Talks

Open source for Business (invited talk) . 1
Ralph Mueller

Jazz: the modern platform for software engineering tools (invited talk) . . . 3
Ferdinando Gorga, Scott Rich

Session 2. Research Papers

WebRatio BPM: a Tool for Design and Deployment of Business
Processes on the Web . 5

Marco Brambilla, Stefano Butti, Piero Fraternali

Adding Social Awareness to Jazz for Reducing Socio-Cultural Distance
within Distributed Development Team . 17

Fabio Calefato, Domenico Gendarmi, Filippo Lanubile

Weaving Eclipse Applications . 29
Fabio Calefato, Filippo Lanubile, Mario Scalas

An Eclipse Plug-in for Design Pattern Recovery . 41
Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, Michele Risi,
Genny Tortora

An Eclipse Plug-in to Enhance the Navigation Structure of Web Sites . . . 53
Damiano Distante, Michele Risi, Giuseppe Scanniello

An Empirical Evaluation of the Eclipse Framework . 65
Mariarosaria Lapolla, Michele Risi, Giuseppe Scanniello

Exploring Eclipse possibilities to realize Mashups . 77
Paolo Maresca, Giuseppe Marco Scarfogliero, Lidia Stanganelli, Gia-
como Franco, Giancarlo Nota

A Design Pattern Detection Plugin for Eclipse . 89
Christian Tosi, Stefano Maggioni, Marco Zanoni

Session 3. Student Papers

XTGT: un tool estensibile per la generazione di test suite 100
Laura Bottanelli

Awareness in un plug-in per Shared Editing . 102
Annunziato Fierro, Ilaria Manno, Pasquale Vitale

Interactive Graphical Maps for Infocenter via Model to Model
Transformation . 104

Enrico Oliva

Eclipse-L: Un ambiente integrato open source per la didattica
universitaria mobile . 107

Mauro Rocco

EifFE-L incontra ECLIPSE . 110
Diego Brondo, Lidia Stanganelli

Model Driven Software Development con Eclipse, StatechartUMC 113
Aldi Sulova

���� ����	�
�� ��������

����� �����	

������� �	
����	�

������	�� ��	������ � �
�	��

��� ��	��� �	 ���� ��� ���	����� �� � ������ �	 �� ���� 	 ����� �
�������
��� ���� � ��� ������	 �� ��� ���� ����
��� ��	�� ������ ���
�������� ���� ����� ��� ����� � ���� ������	� �����	���� ��	��� �	�
���
��	�� �� ������� � !����� ������" �������� ��� ����	����� �����	� 	�������
�	 ��� ������	�� #�� � ��� �������$��� %����������� &	��	�� ����'����� ���
��� #��������� &	���� �� ��� (������ &	!��� ���� ���� �������� � ����	�
������	� ����������� �� ��� �����	����� ����� �	����� �	�����)�� ����	���
�	������ (������ &����� *������ +(&*, ����� �� ���� � �����	� ����� �� ����	�
���� ����������" �	�����' ��� ����� �	 � ���������� ��� ����������� �� �������
)�� ���� ���� �	����� �������� � ������	� �����	����� �� (������� -� ���� ��
�� ��� (������ ����� -	���' .	�� +&����	, �� ���� �� ��� ��		��� ������ �
��� �������� (/(��� ��� ������)�� ���������� �� ��� �������� �����	��

��������	

����� �����	 ���	��� �	���' �	 ��� (������ 0������� �� ��������	 1223� 4
������	 ��������� �� �	���" �� ���� ��� ���� ���� � ��� �	� �� ��� ����	����
��� �������' � ��� (�	���� (������ (� ������� %� ������� � ����" �� �� ��
� ��� ���� ������ ����� �� 5���	�� (�	�� �	 �������� ��� ����������� ����
���� � ��� (������" �	���� ��	����� �	��� (������ 	 ���	����� � (�������
6���� � ��� ���� ����	�����" �� �� ��� ����	��' �����	���� ���� ������	���
���� �� 4������� 	 4�	����� ���� ��� '�� � �	��� ��� (������ ���� ���
����� �	���� ����' ���� � �����	� �������	 ��� � ����'�	 � �����	� �������
���� ����� �� ��	��� ��������" ����� !����
�!���)�����'� %���	�������
+
)%, �� 7889" ���	� �� ������ � ���� ��� (�	����
)% 	'�������� ����
��� ��� �	������ �����	" ���
)% ��� �� :�	��� � �� � ��� �	����� � (������
������'�� ����� ���� !���� %6�" ���	� �� ��	��� �� � ���� �	������� �	 ��
� %6��� ��	���'�� ����������� �	 ��� 4������� ������	����

1

����� ��� �	
��� ����	�� �	� �	������

����������� �		��

���������� 	��
�1 ��� ��� ����2

1 ��� �����	�
 �������� ����� ���
�
2 ��� �	 �������� ����	�
� ����� ����� ����
�	�� ���

�� ��� ���������� �� ���� ����� ���� ���� ������� ��� �� ���
� �� ����

���� ����������� ���� �� �� ���
����� ������� � ������ �� ������� ����

� ����������� ��� ����� �� ���� ����� ���� �� � ������� � ����������� ����

���������� �� ����� ���� ����������! �������! ��� �����
��� ��������

"� �� ���! �� ��� �������
 �� ������
 ���������� ����������� �� ���

������������! ��������! ��� �������
 ������ �� ������� �����#����

����������� � ����� ��
���������� ��������� �� ��������� ��� ������� �����

����� ���������#

	
������ � $���� ���� ��� ������� %����# �# �������
 ����&�� ����� ��

�������� ����������

����� � '���������# ������� �# ��������
 ���
���� �
���� ������� ��������

�������

���� ������� ������� ���������� ��� � ���� �� ������ �������� ���� ����
��

�� ����� �� ����� �������# ������ ������
 �� � ���(

� $����#��� ���
����� ��� �� ���#)����� ���
�����!

� "��� *�� ��� �� ������� *��

� +������ �������� ��� �� ������ ������� ������� ���#

"���� ����������� ���� �� �,������� ������
 ���� ��������� ����
 ����(%����#

����
���� ��������! ��%������� ��� ������������ ��������! ����������

��������� ��������� -� ���� ��� ���� ����� ���� ������� "��� '�����!

������� .����# ���
�� ��� ������� ��%������� '��������

������	
� ��������� �����

���������� 	��
� ��
������� �� ������� ������� �� �� /�������0 �� �������!

��� ������������� �� ���
������
 ���
��
�� ��� ������� ��
�������
� 1���

������� #���� ������
 �� ����
��� ��� ����#� �� � �� �� ���2��� �� ����� 	���

������! �������! "�������! �� 2����� ������� �������! ������
 �� ��������

������������� ����� ���! ��� ���� �� ��%������� �� ������� �# �� ! ��� ����

�� � ������ ��� ���� �� �� ������� �������� �� ������ ��������� ��������

�� ������� ����������� ������������# ���� �� �� � /�������# 1���������!

�����
 �� ����������� ��� /���������� ��� ��������
 �� �������
� ��� ��

���
� �� �� �� ������� �������� � �#���� ��� ������� �����������

3

��������	
���� ���

����� ���� �� 	
����������� �������� 	�� �	���� �������� 	� ��� �� ����	���

���	���� �	��� ����� �	�����	� ���� � �� ��� ��	� �! ��� ���"��� �	�	��#���

��##����� !�� ��� $	%% &���	���� ���"���� 	�� 	 !������ #�#'�� �! ��� $	%%

(��"���� ����� �� 	 #�#'�� �! ��� ���� ��	# �! ��� ��� �����
�����(#���

������� 	��)	� (�������* ������(#��� ��	� !�� �	����	� �((���	����
����+

�(��� � �	�)����� 	� ��� !�� ,, *�	��� ������� 	 �#'�� �! �������	� (��������

�� ��	� ��#� �� -��	���� !�� �#	���	�� 	�� $	�	� .�'�(���� ������ 	�� ��)

�	����	�/� ��	# ������

4

WebRatio BPM: a Tool for Design and
Deployment of Business Processes on the Web

Marco Brambilla1, Stefano Butti2, Piero Fraternali1

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano - Italy

{marco.brambilla, piero.fraternali}@polimi.it
2 Web Models S.r.l., I-22100 Como - Italy

stefano.butti@webratio.com

Abstract. This paper presents WebRatio BPM, an Eclipse-based tool
that supports the design and deployment of business processes. The tool
applies Model Driven Engineering techniques to complex, multi-actor
business processes, mixing tasks executed by humans and by machines.
Business processes are described through the standard BPMN 1.2 nota-
tion, extended with information on task assignment and escalation poli-
cies, activity semantics, and typed dataflows, to enable a two-step gen-
erative approach: first the Process Model is automatically transformed
into a Web Application Model in the WebML notation, which seamlessly
express both human- and machine-executable tasks; secondly, the Appli-
cation Model is fed to an automatic transformation capable of producing
the code. The tool provides various features that increase the productiv-
ity and the quality of the resulting application: one-click generation of
a running prototype of the process from the BPMN model; fine-grained
refinement of the resulting application; support of continuous evolution
of the application design after requirements changes (both at business
process and at application levels).

1 Introduction

Business process languages, such as BPMN (Business Process Management No-
tation) [8], have become the de facto standard for enterprise-wide application
specification, as they enable the implementation of complex, multi-party business
processes, possibly spanning several users, roles, and heterogeneous distributed
systems. Indeed, business process languages and execution environments ease
the definition and enactment of the business constraints, by orchestrating the
activities of the employees and the service executions.

This paper presents an integrated approach and a supporting toolsuite to
the specification, design and implementation of complex, multi-party business
processes, based on a Model-Driven Engineering (MDE) methodology and on
code generation techniques capable of producing dynamic Web applications from
platform independent models.

The proposed approach is a top down one: the (multi-actor, multi-site) busi-
ness process is initially designed in an abstract manner, using the standard

5

BPMN notation for schematizing the process actors, tasks, and business con-
straints. The resulting BPMN model is an abstract representation of the business
process and cannot be used directly for producing an executable application, be-
cause it lacks information on essential aspects of process enactment such as: task
assignment to humans or to Web Services, data flows among tasks, service invo-
cation and user interface logics. Therefore, the standard BPMN specification is
manually annotated with the missing information, to obtain a detailed process
model amenable to a two-step transformation:

– A first model-to-model transformation (Process to Application) translates
the detailed process model into: 1) a platform-independent model of the Web
user interface and of the Web Service orchestrations needed for enacting the
process, expressed in a Domain Specific Language called WebML [2]; 2) a
Process Metadata Model, representing the business constraints (e.g., BPMN
precedence constraints, gateways, etc).

– A second model-to-text transformation (Application to Code) maps the Ap-
plication Model and the Process Metadata Model into the running code of
the application. The resulting application is runtime-free and runs on any
standard Java Enterprise Edition platforms.

The original contributions of the paper are: (i) an MDE forward-engineering
methodology that starts from a high-level process model and progressively trans-
forms it into the running code of the application, comprising Web Service in-
teraction logics and Web User Interface logics; (ii) a refinement of the BPMN
notation for augmenting the semantics of the Process Model and enable effective
model transformation; (iii) a two-step generative framework transforming the
refined Process Model into an Application Model, and for generating the exe-
cutable code from the Application Model; and (iv) an extended version of the
WebRatio toolsuite [11], called WebRatio BPM, that fully implements all the
steps of the presented methodology.

The paper is organized as follows: Section 2 discusses the background tech-
nologies and notations; Section 3 discusses the approach to application devel-
opment; Section 4 and Section 5 illustrate the extended process model and the
application model, respectively; Section 6 describes the implementation of the
WebRatio BPM tool; Section 7 discusses the related work; and Section 8 draws
the conclusions.

2 Background: BPMN, WebML, and WebRatio

This work builds upon existing methods and tools to cover the different design
phases.

BPMN [8] supports the high level specification of service choreographies, and
allows one to visually specify actors, tasks, and constraints involved in a business
process. Precedence constraints are specified by arrows, representing the control
flow of the application, and gateways, representing branching and merging points

6

Customer
Credit Score

G
ov

er
n

H
ou

si
ng

ag

en
cy

P
ro

du
ct

pr

ov
id

er
Ba

nk

As
so

c.

Customer
Leasing
Request

Ba
nk

Customer
tax status

Product
Type?

[Car]

[House]

House Leasing
Quotation

(Credit Score > required) &&
(Tax Status == “Valid”)

Confirm
Quotation

[Yes]

[No]

Car Leasing
Quotation

Best
Quotation
Selection

Fig. 1. Business process model of the leasing running example.

of execution paths. Parallel executions, alternative branches, conditional execu-
tions, events, and message exchanges can be specified. BPMN allows analysts
to describe complex orchestrations of activities, performed by both humans and
machines. Figure 1 shows an example of BPMN, describing a simplified leasing
process for houses and cars.

WebML [2] is a Domain Specific Language for data-, service-, and process-
centric Web applications [1]. It allows specifying the conceptual model of Web
applications built on top of a data schema and composed of one or more hy-
pertexts used to publish or manipulate data. The data model can be specified
through standard E-R or UML Class diagrams. Upon the same data model,
different hypertext models (site views) can be defined (e.g., for different types
of users or devices). A site view is a graph of pages, consisting of connected
units, representing data publishing components. Units are related to each other
through links, representing navigational paths and carrying parameters. WebML
allows specifying also update operations on the underlying data (e.g., the cre-
ation, modification and deletion of instances of entities or relationships) or op-
erations performing arbitrary actions (e.g. sending an e-mail, invoking a remote
service [6], and so on). Figure 2 shows a simple site view containing two pages,
respectively showing the list of houses and a form for searching cars available
for leasing. Page Search Leasing Cars contains an entry unit for inputting the
car model to be searched, a scroller unit, extracting the set of cars meeting the
search condition and displaying a sequence of result blocks, and a multidata unit
displaying the cars pertaining to a block of search results. Besides Web applica-
tions, WebML can be used to specify Web services, Web service orchestrations,
and the consumption of Web services by Web applications.

WebML is supported by the WebRatio CASE tool [11], which allows the
visual specification of data models and site views and the automatic generation

7

User SiteView

House
[Leasing=TRUE]

House
[OID=CurrHouse]

CurrHouse:OID

House List House details

D Search Leasing Cars PageLeasing Houses Page

Car
[Model contains keyword]

Entry unit Scroller unit Cars multidata

Car
[OID in BlockCars]

keyword BlockCars:{OID}

Fig. 2. WebML hypertext model example.

of J2EE code. The tool consists of a set of Eclipse plug-ins and takes advantage
of all the features of this IDE framework. It also supports customized extensions
to the models and code generators, model checking, testing support, project
documentation, and requirements specifications.

The main features of WebRatio are the following: it provides an integrated
MDE approach for the development of Web applications and Web services, em-
powered by model transformations able to produce the complete running code;
it unifies all the design and development activities through a common interface
based on Eclipse, which includes the visual editing of models, the definition of
presentation aspects, and the extension of the IDE with new business compo-
nents and code generation rules; it stores all the design artifacts into a common
area (the Eclipse workspace) and manages them in a version control and collab-
orative work system; it can easily be extended with any existing Eclipse plugin
(e.g., for Java component development, debugging, and so on).

3 Development Process

The development process supported by WebRatio BPM is structured in four
main steps, represented in Figure 3.

Initially, business requirements are conceptualized in a high-level Business
Process Model, which summarizes the needs of the stake-holders in a coarse
BPMN schema. Figure 1 is an example of BPM that can be obtained as a
requirement specification of the leasing application. Subsequently, the BPMN
schema is refined by a BPM expert, who annotates it with parameters on the
activities and data flows.

The resulting extended Process Model is subject to a first transformation,
which produces the Application Model and Process Metadata Model. The Ap-
plication Model (discussed in Section 5.2) specifies the details of the executable
application according to the WebML notation, representing the hypertext inter-
face for human-directed activities. The Process Metadata Model (discussed in
Section 5.1) consists of a conceptual view (represented as a UML class diagram)
of the activities of the process and of the associated constraints, useful for en-
capsulating the process control logic. This transformation extends and refines

8

Business
process

specifications
(BPMN)

Choreography
model

(extended
BPMN)

Application
executable

model
(WebML)

Running
application

(J2EE)

Code
generation

Model
transformation

Manual
enrichment

Manual
refinement

(Automatic) (Automatic)

Fig. 3. Development process overview.

the technique for model-driven design of Web applications from business process
specification initially proposed in [1]. Subsequently, the generated Application
Model can be either executed as-is to get a first flavour of the application execu-
tion, or it can be refined manually by the designer, to add domain-dependent in-
formation on the execution of activities. Finally, the refined Application Model is
the input of a second transformation, which produces the code of the application
for a specific technological platform (in our case, J2EE); this step is completely
automated thanks to the code generation facilities included in WebRatio.

4 Refined Process Model

The high-level BPMN process model designed in the requirement specification
phase is not detailed enough to allow the generation of the application code. Its
refinement is done using an extended BPMN notation, which enables a more
precise model transformation into a WebML Application Model and then into
the implementation code. In particular, the process model is enriched with infor-
mation about the data produced, updated and consumed by activities, which is
expressed by typed activity parameters and typed data flows among activities.
Furthermore, activities are annotated to express their implicit semantics, and
gateways (i.e., choice points) that require human decisions are distinguished.

Figure 4 shows the graphical notation of the extended BPMN activity. An
activity is associated with a Name (1), which is a textual description of its se-
mantics, and possibly an Annotation (2), which describes the activity behaviour
using an informal textual description. An activity is parametric, and has a (pos-
sibly empty) set of input (3) and output (4) parameters. The actual values of

Activity Name

par_1
par_2

par_5

par_3
par_4

1

43

2

Fig. 4. Extended activity notation.

9

input parameters can be assigned from preceding activities; the output parame-
ters are produced or modified by the activity. Analogous extensions are defined
for gateways; these are further refined by specifying whether they are imple-
mented as manual or as automatic branching/merging points. Manual gateways
(tagged as Type “M”) involve user interaction in the choice, while Automatic
gateways (tagged as Type “A”) automatically evaluate some condition and de-
cide how to proceed with the process flow without human intervention. The
output flow of gateways can be associated to a guard condition, which is an
OCL Boolean expression over the values of the parameters of the gateway; the
semantics is that the activity target of the flow link with the guard condition
can be executed only if the condition evaluates to true.

5 Application Model

Starting from the Detailed Process Model presented above, an automatic trans-
formation produces: (1) Process Metadata Model, describing the process con-
straints in a declarative way as a set of relations; (2) the Domain Model, speci-
fying the application-specific entities; (3) and the Application Model, including
both the site views for the user interaction and the service views for Web service
orchestration.

Hence, the transformation consists of two sub-transformations:

– Detailed Process Model to Process Metadata: the BPMN precedence con-
straints and gateways are transformed into instances of a relational represen-
tation compliant to the Process Metamodel shown in Figure 5, for enabling
runtime control of the process advancement;

– Detailed Process Model to Application Model: the BPMN process model
is mapped into a first-cut Application Model, which can be automatically
transformed into a prototype of the process enactment application or sub-
sequently refined by the designer to incorporate further domain specific as-
pects.

Thanks to the former transformation, the BPMN constraints, stored in the
Process Metadata Model, are exploited by the components of the Application
Model for executing the service invocation chains and enacting the precedences
among human-executed tasks.

5.1 Process Metadata Model Generation

Figure 5 shows, as a UML class diagram, the schema of the metadata needed
for executing an BPMN process at runtime.

A Process represents a whole BPMN diagram, and includes a list of Activities,
each described by a set of input and output ParameterTypes. A Case is the
instantiation of a process, and is related to the executed Activity Instances, with
the respective actual Parameter Instances. The evolution of the status history

10

-oid
-name
-description

Process
-oid
-name
-description
-execution
-type

Activity

-name
-description
-type

ParameterType

-oid
-name
-status

Case

-oid
-status

ActivityInstance
-oid
-value

ParameterInstance

-oid
-entryStatus
-entryTimestamp

CaseLogEntry

-oid
-entryStatus
-entryTimestamp

ActivityLogEntry

-oid
-username
-password

User

-oid
-groupName

Group

-oidPrevious
-oidNext
-condition

Condition

*

1

*

1

*

1

*

1 *

1

* *

*

1

*

*
*

1

*

1

*

*
*

*

*

*

*

1

*

1

*

*

Previous

Next

Executed by

Contains

Instantiated Instantiated
Belongs to

Logged Logged

Previous/
Next

OutputParameter

InputParameter

Contains

* *

Executable by

OutputParameter

InputParameter

Instantiated

Fig. 5. Process Metadata describing the BPMN constraints.

is registered through CaseLogEntry and ActivityLogEntry. Users are the actors
that perform a task and are clustered into Groups, representing their roles.

The transformation from the extended BPMN to the Process Metadata is a
relational encoding of the BPMN concepts: each process model is transformed
to a Process instance; each activity is transformed into an Activity instance;
each flow arrow is transformed into a nextActivity/previousActivity relationship
instance; each guard condition is transformed into a Condition instance.

5.2 Application Model Generation

The transformation from Refined Process Models to WebML coarse models of
services and hypertext interfaces considers the type (human or automatic) of the
gateways and the information on the data flows. The application models pro-
duced by the transformation still need manual refinement, to add domain-specific
elements that cannot be expressed even in the enriched BPMN notation. How-
ever, by exploiting information about the activity type, a first-cut application
model can be generated, which needs reduced effort for manual refinement.

The computation of the next enabled activities given the current state of
the workflow is encapsulated within a specific WebML component, called Next
unit, which factors out the process control logic from the site view or service
orchestration diagram: the Next unit exploits the information stored in the Pro-
cess Metadata to determine the current process status and the enabled state
transitions. It needs the following input parameters: caseID (the currently ex-
ecuted process instance ID), activityInstanceID (the current activity instance
ID), and the conditionParameters (the values required by the conditions to be
evaluated). Given the activityInstanceID of the last concluded activity, the Next

11

Error in Next Unit
Page

Switch NextUnit

[Module=1]

Customer
Leasing
Request

Error in Switch
Page

KO

KO

Case=1

OK

Case=2

Case=3

[Module=3]

Customer
Credit
Score

[Module=2]

And Split

[Module=...]

...

Case=...

...

Orchestration SV

Fig. 6. WebML Orchestration Siteview.

unit queries the Process Metadata objects to find all the process constraints that
determine the next activity instances that are ready for activation. Based on the
conditions that hold, the unit determines which of its output links to navigate,
which triggers the start of the proper subsequent activities.

The Process to Application Model Transformation from BPMN to WebML
consists of two main rules: the Process transformation rule, addressing the struc-
ture of the process in-the-large; and the Activity transformation rule, managing
the aspects of individual activities: parameter passing, starting and closing, and
behavior. For modularity and reusability, the piece of WebML specification gen-
erated for each activity is enclosed into a WebML module, a container construct
analogous to UML packages.

Figure ?? shows an overview of the outcome of the Process transformation
rule: the hypertext page for manually selecting the process to be started and for
accessing the objects resulting from process termination. This WebML fragment
models the process wrapping logic, generated from the Start Process and End
Process BPMN events.

The generated WebML model further comprises: (1) the orchestration site
view, that contains the logic for the process execution; (2) a site view or service
view for each BPMN pool; (3) a set of hypertext pages for each human-driven
BPMN activity; (4) one service invocation (triggering the suitable actions for
application data updates) for each automatic activity.

Figure 6 shows the model of the orchestration site view. The enactment of
the process is performed through a loop of WebML module invocations, each
representing the implementation of one of the activities.

The Activity transformation rule is based on the BPMN activity and gateway
specifications, taking into account aspects like the actor enacting the activity
(e.g., a human user or the system). For each BPMN activity and gateway, a

12

WebML module implementing the required behavior is generated. Each gener-
ated module has a standard structure: an input collector gathers the parameters
coming from previous activities; the activity business logic part comprises a form
with fields corresponding to the output of the activity and a Create unit that
stores the information produced by the activity persistently, for subsequent use.
For gateways, the transformation rule behaves according to the BPMN seman-
tics and to the kind of executor assigned to the gateway (human or automatic): if
the gateway is tagged as human-driven, a hypertext is generated for allowing the
user to choose how to proceed; if the gateway is tagged as automatic, the choice
condition is embedded in the application logic. The transformation of BPMN
gateways is conducted as follows:

– AND-splits allow a single thread to split into two or more parallel threads,
which proceed autonomously. The WebML model for AND-split automatic
execution generates a set of separate threads that launch the respective sub-
sequent activity modules in parallel, while manual execution allows the user
to select and activate all the possible branches.

– XOR-splits represent a decision point among several mutually exclusive
branches. Automatic XOR-splits comprise a condition that is automatically
evaluated for activating one branch, while manual XOR-splits allow the user
to choose one and only one branch.

– OR-splits represent a decision for executing one or more branches. Automatic
OR-splits comprise a condition that is automatically evaluated for activating
one or more branches, while the manual version allows the user to choose
the branches to activate.

– AND-joins specify that an activity can start if and only if all the incoming
branches are completed. This behavior is usually implemented as automatic.

– XOR-joins specify that the execution of a subsequent activity can start as
soon as one activity among the incoming branches has been terminated. This
behavior is usually implemented as automatic.

– OR-joins specify that the execution of the subsequent activity can start as
soon as all the started incoming branches have been terminated. This behav-
ior is usually implemented as automatic, possibly through custom conditions
on the outcome of the incoming branches.

Figure 7 shows two simplified examples of generated modules: the XOR (Pro-
ductType) module (Figure 7.a) implements the automatic evaluation of the XOR
gateway in the BPMN model of Figure 1: given the ProductID, it extracts its
type and checks whether it is a car or a house. The next activity to be performed
is set accordingly, and this information is passed to the Next unit in the orches-
tration site view. The Customer Credit Score module in Figure 7.b shows the
generated hypertext page that allows the user to enter and store the credit score
value for the customer, which is the output parameter of the Customer Credit
Score activity of Figure 1.

13

[ProductType=?]

If

[Car]

[House]

activityInstanceID
activityTypeID

userId
ProductID

Input
Collector

activityTypeID

Output
Collector

userId

Input
Collector

CreditScore

Output
Collector

Xor (ProductType) module

Customer Credit Score module

ActivityTypeID= “WSCarLQuotation”

ActivityTypeID= “WSHouseLQuotation”

Set
Parameter

Set
Parameter

(a)

(b)

Query unit

Product
[OID=ProductID]

Product
Type

CreditScore Page
Entry unit CreditScore

CreditScore

Create
+

Fig. 7. WebML Modules for XOR gateway and Customer Credit Score.

6 Implementation of WebRatio BPM

The illustrated method has been implemented as a new major release of WebRa-
tio, called WebRatio BPM. To achieve this result, all three major components
of the tool suite have been extended: the model editing GUI, the code gener-
ator, and the runtime libraries. The model editing GUI has been extended by:
1) creating an Eclipse-based workflow editor supporting the definition of the
refined BPMN Process Model; and 2) adding the Next unit as a new compo-
nent available in the WebML Application Model editor. The code generator has
been extended in two directions: 1) the BPMN to WebML transformation has
been integrated within the toolsuite, thus allowing automatic generation of the
WebML Application Models and of the Process Metadata. 2) the code genera-
tion from WebML has been augmented to produce the instances of the Process
Metadata and to integrate the novel components (e.g., the Next unit) into the
existing J2EE code generation rules.

Moreover, a one-click publishing function has been added to the BPMN edi-
tor, thus allowing the immediate generation of a rapid prototype of the BPMN
process. The prototype is a J2EE dynamic, multi-actor application with a de-
fault look & feel, produced from the WebML Application Models automatically
derived from the BPMN diagrams, according to the previously described tech-
niques. The process prototype comprises a few exemplary users for each BPMN
actor, and allows the analyst to impersonate each role in the process, start a
process and make it progress by enacting activities and both manual and auto-
matic gateways. Figure 8 shows a snapshot of the user interface of the WebRatio
BPMN editor.

The WebRatio BPM tool is being tested in a real industrial scenario of a
major European bank, that needs to reshape its entire software architecture
according to a BPM paradigm with a viable and sustainable design approach.

14

The first set of developed applications addressed the leasing department. The
running case presented in this paper is inspired by the leasing application that
is under development. The real application involves more than 80 business pro-
cesses, which orchestrate more that 500 different activities.

Fig. 8. WebRatio BPM user interface.

7 Related Work

A plethora of tools exist for business process modeling and execution, produced
by major software vendors, open source projects, or small companies. In our re-
view of existing tools, we identified more than fifty relevant tools in the field. A
report from Gartner [4] describes the magic quadrant of the field and selects the
most promising solutions. Among them, we can mention Lombardi Teamworks,
Intalio, webMethods BPMS, Tibco iProcess, Savvion BusinessManager, Adobe
Livecycle ES, Oracle BPM Suite, IBM WebSphere Dynamic Process Edition.
Most of them rely on Eclipse as IDE environment and include a visual designer
of business models and a generator of configurations for associated workflow en-
gines. The main innovations of our approach with respect to the competitors are:
(1) quick generation of a running prototype; (2) possibility of refinement of the
prototype at the modeling level; (3) support of the final application generation
through MDD.

In the scientific community, some other works have addressed the challenge
of binding the business processing modeling techniques with MDD approaches
addressing Web applications development. Koch et al. [5] approach the inte-
gration of process and navigation modeling in the context of UWE and OO-H.
Also Araneus [7] has been extended with a workflow conceptual model, allowing

15

the interaction between the hypertext and an underlying workflow management
system. In OOHDM [9], the content and navigation models are extended with
activity entities and activity nodes respectively, represented by UML primitives.
Torres and Pelechano [10] combine BPM and OOWS [3] to model process-centric
applications; model-to-model transformations are used to generate the Naviga-
tional Model from the BPM definition and model-to-text transformations can
produce an executable process definition in WS-BPEL.

8 Conclusion

This paper presented a methodology and a tool called WebRatio BPM for sup-
porting top-down, model-driven design of business-process based Web applica-
tions. The tool is now available for testing purposes and will be commercially
distributed starting from October 2009. Ongoing and future works include eval-
uation of productivity of the developers and of quality of the implemented ap-
plications, and coverage of further aspects of BPMN semantics (i.e., customized
events and exceptions). The tool, albeit still in a pre-beta status, is being used in
a large banking application and therefore we expect to collect useful user feed-
backs, new requirements, and (quantitative) quality and productivity metrics for
the proposed approach in the immediate future.

References

1. Marco Brambilla, Stefano Ceri, Piero Fraternali, and Ioana Manolescu. Process
Modeling in Web Applications. ACM TOSEM, 15(4):360–409, 2006.

2. Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and
Maristella Matera. Designing Data-Intensive Web Applications. Morgan Kaufmann
Publishers Inc., 2002.

3. Joan Fons, Vicente Pelechano, Manoli Albert, and Oscar Pastor. Development of
web applications from web enhanced conceptual schemas. In ER Workshop on
Conceptual Modeling and the Web, volume 2813 of LNCS, USA, 2003. Springer.

4. Gartner. Magic Quadrant for Business Process Management Suites. Feb. 2009.
5. Nora Koch, Andreas Kraus, Cristina Cachero, and Santiago Meliá. Integration of

business processes in web application models. J. Web Eng., 3(1):22–49, 2004.
6. Iana Manolescu, Marco Brambilla, Stefano Ceri, Sara Comai, and Piero Fraternali.

Model-Driven Design and Deployment of Service-Enabled Web Applications. ACM
Trans. Inter. Tech., 5(3):439–479, 2005.

7. Paolo Merialdo, Paolo Atzeni, and Giansalvatore Mecca. Design and development
of data-intensive web sites: The Araneus approach. ACM Trans. Internet Techn.,
3(1):49–92, 2003.

8. OMG, BPMI. BPMN 1.2: Final Specification. Technical report, 2009.
9. Hans Albrecht Schmid and Gustavo Rossi. Modeling and designing processes in

e-commerce applications. IEEE Internet Computing, 8(1):19–27, 2004.
10. Victoria Torres and Vicente Pelechano. Building business process driven web ap-

plications. In BPM, volume 4102, pages 322–337. Springer LNCS, 2006.
11. Webratio. http://www.webratio.com.

16

Adding Social Awareness to Jazz
for Reducing Socio-Cultural Distance

between Distributed Development Teams

Fabio Calefato, Domenico Gendarmi, Filippo Lanubile
Dipartimento di Informatica, Università degli Studi di Bari, via E. Orabona 4

70125 Bari, Italy
{calefato, gendarmi, lanubile}@di.uniba.it

Abstract. A Collaborative Development Environment (CDE) provides a shared
workspace with a standardized toolset that helps distributed development teams
cope with geographical distance. However, CDEs lack any support to reduce
socio-cultural distance, which poses practical barriers to the development of
connections and shared culture in distributed settings. The recent rise of the
Social Web created several opportunities to publish personal information and
develop connections from a distance. We argue that disseminating additional
social awareness information to developers, who have little or no chances to
meet, can help to speed up the establishment of organizational values, attitudes,
and trust-based inter-personal connections. In this paper, building on existing
literature, we first propose our definitions of three distinct types of awareness.
Then, by means of scenarios, we show how our extension of the Jazz, a CDE
that already provides presence and workspace awareness, adds social awareness
information about coworkers, i.e., interests, emotional state, in order to reduce
socio-cultural distance, and improve team openness and well being in
distributed settings.

Keywords: Group Awareness, Social Awareness, Social Web, Web 2.0,
Mashup, Jazz, Eclipse, Collaborative Development Environment, CDE.

1 Introduction

In distributed settings, due to distance, software teams often rely on Collaborative
Development Environment (CDEs), such as SourceForge1, GoogleCode2, Github3,
and Assembla4, which are an integrated and flexible set of tools (e.g., code compiler
and debugger, version control, issue tracking) that help distributed teams control their
software development process. Yet, despite their ability to cope with geographical
distance, CDEs provide little support to reduce socio-cultural distance. In fact,
differences in culture, which can be intuitively epitomized as a fuzzy set of attitudes,

1 http://sourceforge.net/
2 http://code.google.com
3 http://github.com/
4 http://www.assembla.com/

17

beliefs, behavioral norms, basic assumptions and values that are shared by a group of
people [21], pose practical barriers to the development of relationships and
connections (i.e., common ground, mutual confidence, trust) within distributed teams,
with a potential severe impact on project management effectiveness.

The idea of applying social software to help distributed teams deal with socio-
cultural distance is rather recent. The rise of the Social Web, also known as Web 2.0
[5], created lots of sources for personal, user-generated content, and opportunities to
develop connections from a distance. In [1] we presented our initial prototype, which
embeds information collected from social websites (e.g., Twitter5, Facebook6,
Last.fm7) into the IBM Jazz CDE. We used the Jazz CDE, because it already provides
both presence and workspace awareness, and leveraged the FriendFeed aggregator
service to embed personal information about distributed co-workers, collected from
social networks. Here, building on relevant literature, we first propose our own
defintions of the existing types of awareness. Then, after showing the features or our
Jazz extension, we present some key usage scenarios to illustrate how providing
distributed software teams with overall group awareness (i.e., presence, workspace,
and social awareness) aggregated in one place can help to speed up the establishment
of organizational values, attitudes, and trust-based personal connections between
distant team members, with little or no chances to meet.

The remainder of this paper is organized as follows. In Section 2, we present an
overview on CDEs and Jazz, in particular. In Section 3, building on relevant previous
works, we propose our definitions of different awareness types. In Section 4 we first
discuss the rise of Social Web applications in general, and then we present
FriendFeed as a particular example of Web Mashup. Our Jazz extension is discussed
in detail in Section 5, whereas in Section 6 we illustrate the usage scenarios. Finally,
we conclude in Section 7.

2 Collaborative Development Environments

In software development, control is the process of adhering to goals, policies,
standards, and quality levels, set either formally (e.g., formal meetings, plans, explicit
guidelines) or informally (e.g., team culture, peer pressure). Because in distributed
settings it is not possible to control units by walking, organizations had to fall back to
using collaborative tools to control the software development process from a distance.
Collaborative Development Environments (CDEs), such as SourceForge, Gforge,
Google Code, are the most used and full-featured process-aware tools to support
distributed teams.

CDEs were envisioned by Booch & Brown, who first acknowledged the need for
‘frictionless surface’ in development environments [4], motivated by the observation
that much of the developers’ effort is wasted in switching back and forth between
different applications to communicate and work together. According to this vision,
collaborative features should be available as components that extend core applications

5 http://twitter.com/
6 http://www.facebook.com/
7 http://www.lastfm.it/

18

(e.g., the IDE), thus increasing the users’ comfort and productivity. Therefore, CDEs
support developers by incorporating the standard toolset needed (e.g., compiler,
debugger, version control system, bug tracker) within a single project workspace,
reducing the effort of running multiple different applications to communicate and
work together.

Earliest CDE were developed within open source software (OSS) projects because
OSS projects, from the beginning, have been composed of dispersed individuals.
Today a number of CDEs are also available as commercial products.

2.1 IBM Jazz CDE

Jazz [8] is one of the most noticeable commercial CDE because it can be customized
to support any process. Besides, Jazz is an extensible platform, which leverages the
Eclipse’s notion of plugins to build CDE products. The present version has a wide-
ranging scope, but in the former version of Jazz the goal was to integrate synchronous
communication and reciprocal awareness of coding tasks into the Eclipse IDE,
following Booch & Brown’s vision.

Jazz is an extensible team collaboration platform based on a client-server
architecture, which integrates many different technologies in a single environment.
The Jazz server hosts a set of services (e.g., generate reports, resolve work items from
the Web) and houses data in its repository (e.g., configurations, source code). Remote
clients communicate with the Jazz server over the network, using SOAP/XML over
HTTP (Fig. 1). The full-featured Jazz client is Rational Team Concert, an extension
of the Eclipse IDE, packed with all the plugins necessary to the Jazz development
platform. It provides presence awareness, thanks to the integration with Lotus
Sametime, and workspace awareness, by generating an RSS feed of all project-related
events occurring the workspace.

The essential components of Jazz are the Repository and Team Process, which
represent the platform kernel and are developed by the Jazz Project Member (Fig. 2).
Other members of the Jazz community develop additional components to add new
capabilities to Jazz, such as source control and reporting. While the Team Process
component is meant to make Jazz a customizable, process-aware platform, Repository
allows to store tool-specific information in a central place where it can be made
available to all other components in all client and server configurations. Thus, the
Repository plays a key role in Jazz extensibility.

Fig. 1. Jazz Client-Server Communication [11]

19

Fig. 2. Components of the Jazz Platform [11]

3 Types of Awareness: Definitions

Dourish and Bellotti were among the first to define the concept of awareness as an
understanding of the activities of others, which provides a context for one’s activity,
so that individual contributions are relevant to the group’s activity as a whole [7]. The
concept of awareness is strictly connected to the activities of displaying and
monitoring of information [16]. When performing a shared, collaborative activity,
displaying refers to the notification of one’s information (e.g., presence and actions,
typically) that can be relevant to others involved. Monitoring is the complement of
information displaying, as it refers to the peripheral observation of others in an
unobtrusive way, in order to avoid interruptions.

Being a complex, information-intensive, and highly collaborative activity, software
development can greatly benefit from awareness, especially in distributed settings,
where teammates have to collaborate from a distance. Ko et al. [13] conducted a study
to understand the information needs in software developments teams, showing that
the most frequently sought information included awareness about tasks, artifacts, and
co-workers. We have identified three major types of awareness: presence, workspace,
and social.

Presence awareness is the awareness of what distant colleagues are doing, their
availability for interaction, and how they prefer to be reached, helping coworkers to
minimize interruptions and disturbances when engaging in collaborative processes
[9]. Presence awareness has almost become synonymous with IM and VoIP because
such tools represent the preferred, lightweight means to broadcast information or
questions, as well as ascertain and negotiate availability to accommodate
opportunistic interaction between co-workers.

Workspace awareness means knowing project teams and their internal structure, as
well as team members and artifacts. Tools such as Palantìr [18], Hipikat [6], and
Mylyn [12] provide developers with workspace awareness information that helps

20

developers to identify other teammates, artifacts, and tasks that are related to the
artifact/task at hand. Workspace awareness is particularly relevant to project
managers and team leads as it helps to track the state of a project.

Social awareness is the awareness about interests, opinions, and emotional state of
members of a group, which can be extremely beneficial to increase the sense of
“teamness” in distributed software settings [16]. Social awareness has been
acknowledged only recently, and unlike presence and workspace awareness, it cannot
be directly considered contextual to a software development project. Nonetheless,
since it helps to develop an organizational culture and to consolidate connections and
trust-based relationships between distant collaborators, social awareness contributes
to project success by improving team’s well being and social health [18]. There are
very few software development-oriented tools that support social awareness. One of
the most noticeable is Github8, a software repository that combines standard features
of social networking sites (e.g., following or messaging developers, watch projects’
activity timeline through feeds) with Git, a distributed source-control system.
Codebook [3], instead, is a Microsoft prototype that aims at developing a social
networking services over code, in which people can also be friends with the artifacts
they share.

Because presence, workspace, and social awareness provide an answer to specific
requests of information, if aggregated in one place they can help teams maintain an
overall group awareness. A recent research study by Omoronya has shown that tool
support for distributed software development teams are still inadequate in enhancing
distributed awareness because most tools are designed to support a specific kind of
awareness in isolation [16]. To date no tool has provided distributed development
teams with support to group awareness. IBM Jazz, discussed in the next section, is
one of the most recent and full-featured Collaborative Development Environments,
which provides presence and workspace awareness in one place, but lacks any support
to social awareness.

4 Social Web

Recently, the rise of the Social Web [5], created new incentives and motivations for
publishing personal information on the Web. Nowadays, plenty of user-generated
content is public available. Applications like Wikipedia9, Flickr10, Delicious11,
LibraryThing12, for example, provide each day new wiki articles, photos, bookmarks
and book reviews, as well as new metadata, which are directly added by users.

However, these forms of collaborative contributions are restricted to one single
application and current Social Web applications are isolated from one another, like
‘walled gardens’. The main reason for this lack of interoperation is that for the most

8 http://github.com/
9 http://www.wikipedia.org/
10 http://www.flickr.com/
11 http://delicious.com/
12 http://www.librarything.com/

21

part in the Social Web, applications’ owners are quite reluctant to provide
programmatic access to user generated content, which is hosted within their web sites.

In such a context, Web mashups have emerged providing a dynamic approach to
compose content and functionalities originating from disparate web sources [23].
Among the different classes of mashup available on the Web, we focused on News
Mashups [15] also known as Syndication Feed Mashups since they use syndication
technologies like RSS and Atom to aggregate news related to various topics and
create personalized feed views. In particular, we envisioned the opportunity to
aggregate feeds about personal information originating from social networking sites
in order to foster group awareness within distributed teams.

4.1 FriendFeed, a Social Information Aggregator

FriendFeed13 is a real-time feed aggregator that consolidates the updates from a
number of social networking websites (e.g., Delicious, YouTube14, Last.fm,
LinkedIn15, Facebook), as well as any other custom website providing an RSS/Atom
feed. Thus, FriendFeed users can use this stream of information to create customized
feeds to share (and comment) with friends. The main reason of FriendFeed success is
that it provides the facility to track users’ activities (such as posting on blogs, Twitter
and Flickr, or listening to music on Pandora16) across a broad range of different social
networks, whereas other services exclusively facilitate tracking of their own members'
activities on their particular social service.

What looked attractive to us about exploiting the FriendFeed service into Jazz is
that: (1) a free API is available for leveraging the service output into third-party
applications; (2) private groups can be defined so that updates from members are
bound within group and not visible to users on the outside; (3) users can decide what
is relevant or appropriate to stream and share, reducing information privacy and
overloading concerns.

Members of the same Jazz project-area can create a FriendFeed private groups
where they can choose which feeds they want to share and who can see the shared
feeds. They can also start a conversation around shared items, or just show that they
like a feed someone else has shared. By aggregating in the same place different feeds
from social networking services used on a daily basis by the project members, we can
thus foster the discovering and discussion of personal information regarding people
within the project-area, speeding up the development of connections and shared
context between team members.

13 http://friendfeed.com/
14 http://www.youtube.com/
15 http://www.linkedin.com/
16 http://www.pandora.com/

22

5 The Jazz Client Extension

The Jazz client extension was coded using a Java wrapper of the FriendFeed API.
Unfortunately, the API itself does not allow doing as much as desired. For instance,
groups cannot be created or managed using the API, which basically allows getting
group description and members, reading the feed, and posting messages. In the
remainder of this section, we briefly illustrate how the extension works in a simple
scenario.

Using the FriendFeed web interface, the project-lead of a Jazz project-area creates
a private group for the project. In order to avoid the friction of switching to the web
browser and then back to the Jazz client, a browser window can be opened in one of
the workspace views to complete group creation (see Fig. 3a).

Other developers needs to be invited to join the group, using either their
FriendFeed usernames, in case they are already registered, or just emails (see Fig. 3b).
Because the group is private, developers will have to enter their FriendFeed
credentials to subscribe the aggregated feed and post contribution. Using the Eclipse
Modeling Framework, we extended the project-area model in order to store
FriendFeed credentials about both users and groups into the Jazz server repository.
This way, even when changing the machine where the Jazz client is run (e.g., in case
of switching from the office desktop to the laptop for a business travel), the group
feed is available as long as the extension is installed on the client.

a)a)

b)b)

a)a)

b)b)

Fig. 3. FriendFeed group creation a) Friend Invitation to the group b)

Developers can be invited to the group as regular members or admins: Only in the

latter case they are allowed to add a service to the aggregated feed. As a group admin,
each developer is allowed to specify what personal information collected from

23

external social web sites can be streamed to the group, without violating his/her
privacy. For instance one developer can choose to stream what he likes on Last.fm
and Pandora, whereas another one can share her bookmarks saved in Delicious and
the book reviews she posted on LibraryThing.

Once the group is created, the project-lead can register it with the project area in
Jazz by entering the URL of the aggregated feed. Upon registering the group, the
associated feed appears in the Team Artifact view of Jazz, under the Feed folder (see
Fig. 4a), along with the default feeds that provide workspace awareness by informing
developers about development-related events (e.g., commits, build failures) or any
other change occurring in the workspace (e.g., changes to the milestones release date).
Hence, the aggregated feed of personal information is visualized using the same
internal feed reader provided by Jazz (see Fig. 4b). Because source services can be
added to the aggregated stream by each developer who subscribed the FriendFeed
group as admin, the larger the development team, the higher the risk of information
overload is. Hence, we extended the feed reader to give each developer the
opportunity to filter the updates from undesired sources. For instance, one can choose
to filter out the updates from Facebook, YouTube and Flickr, while displaying all the
others available in the aggregated feed (see Fig. 4c).

Finally, an extra view has been made available in the workspace to let developers
post message to the FriendFeed group directly from the Jazz client (see Fig. 5a). All
subscribers to the group are then able to view new messages as feeds, through both
the FriendFeed web-based interface and the feed reader included within the Jazz
client (Fig. 5b).

a)a)

b)b)

c)c)

a)a)

b)b)

c)c)

Fig. 4. Name of the feed for the created group a) Feed view on Jazz b) Filtering options c)

24

a)a)

b)b)

Fig. 5. Posting a message to the group a) View of the updated feed b)

6 Usage Scenarios

Here we describe some key scenarios to clarify the potential benefits to teams
adopting our Jazz client extension.

Facilitate interpersonal connections. Ian has just joined the Irish team of the
ALPHA project, which is distributed over multiple sites. Ian’s first task is to develop
a plugin for Eclipse. Looking at task assignments in the Jazz workspace, he is not able
to determine what teammates, if any, have previous experience with the development
of plugins.

Adding our FriendFeed extension to Jazz can increase the transparency of group
structure and competences, and facilitate the establishment of interpersonal
connections. Looking at the project-related FriendFeed stream, Ian decides to filter
out any content other than the bookmarks saved in Delicious and the books reviewed
on LibraryThing. He finds that Brian has shared several references to articles and has
reviewed a couple of books about developing plugins in Eclipse. Thus, Ian, on the one
hand, can go through the references he found; on the other hand, he can get in touch
with Brian, using one of the communication media available to project members, or
he can take advantage of informal, water-cooler conversation, in case they are
collocated.

Improve team openness. The BETA project is distributed over two sites, in
Ireland and in India. In such settings, one of the solutions that has proved effective to
reduce cultural distance and improve team openness is “team buddies”, which
contemplates that each developer from the Indian site is “buddyed up” with one from
the Irish site, providing one-on-one coaching [10]. Thus, Rajiv is buddyed up with
Ian. By getting to know each other better, both Rajiv and Ian will broaden their mind,
making themselves more open to cultural difference, as well as more indulgent to

25

language issues and prone to think that the others are not going to act, feel, or think
the same way.

The use of our FriendFeed extension can help to increase the effectiveness of team
buddies. First, our extension gives both Rajiv and Ian insights about interests,
opinions, etc. of each other: for instance, books that one has been reading to get
started with a new technology they are going to use in the project, or the pictures from
a conference that the other has attended. Besides, our extension can be helpful to learn
about the daily rhythm and habits of work. For example, Rajiv may learn that when
Ian is contributing something to the FriendFeed stream, is a good time to contact him
for a help request with lower chances to interrupt him. Finally, our extension can also
help to decrease the number of cultural awareness workshops, which are often used as
an effective, but expensive, means to reduce cultural distance in distributed projects
[2].

Build a socially open workspace. The GAMMA project is a distributed software
development project that spans over multiple sites, including one in India and another
one in the US. Indian and North American are quite different cultures. Unlike the
latter, Indian is a collectivist, strictly hierarchical culture in which for younger
developers it is considered unfair to say no to or disagree with senior developers, team
leads, and upper management [17,22]. Our Jazz extension can help to lose strict
hierarchical relationships and grant a more equal participation to unhindered
discussions.

In collocated projects, equality of participation and unhindered communication is
encouraged by adopting a physically open environment, with no cubicles or separated
offices for managers and team leads [14]. Our Jazz extension can help to break “sir”
relationships, by fostering the development of connections established on a more
personal basis, and consequently build a socially open workplace where, despite
seniority, it is easier for younger developers to deal with senior team leads and
participate in discussion with lower peer pressure.

7 Conclusions & Future Work

Jazz is a Collaborative Development Environment that provides developers with both
presence and workspace awareness. In this paper we have presented an extension of
the Jazz platform, which leverages the feed aggregation service of FriendFeed to
embed social information collected from social networks into the Jazz client and
provide developers with group awareness as well. We argue that disseminating
additional social awareness information to developers working in dispersed teams can
help to speed up the establishment of organizational values, attitudes, and trust-based
inter-personal connections, thus facilitating the overall distributed software
development process.

While current work is focusing on the enrichment of the Jazz client, as future work
we plan to extend Jazz also on the server side by augmenting the Jazz user profile
with new professional information. Through the mashup of information collected
from both business- and development-oriented social websites (e.g., LinkedIn and

26

Ohloh), we intend to give to Jazz users the opportunity to customize their profile by
including information about professional connections and expertise.

Extending Jazz server-side model allows leveraging the information collected in
the whole profile rather than within a specific project area, thus enabling information
sharing within different teams inside Jazz. Moreover, we plan to develop the server-
side mashup as a web service that exposes personal information as RDF Linked Data
in order to enable Jazz users exporting professional profiles and reusing them in third-
party relevant applications.

Acknowledgments

Our thanks to Davide Fucci for implementing the initial prototype of our Jazz client
extension.

References

1. Abbattista, F., Calefato, F., Gendarmi D., and Lanubile, F. Incorporating Social Software
into Agile Distributed Development Environments. Proc. 1st ASE Workshop on Social
Sofware Engineering and Applications (SOSEA 2008), L'Aquila, Italy, 15 September 2008.

2. Aston, J., Laroche, L., Meszaros, G. Cowboys and Indians: Impacts of Cultural Diversity
on Agile Teams. Agile Conference (AGILE '08), Toronto, 4-8 Aug. 2008, pp. 423-428.

3. Begel, A., DeLine, R. Codebook: Social networking over code. Proc. Int’l Conf. Software
Engineering (ICSE ’09) Vancouver, Canada, 16-24 May 2009, pp. 263-266.

4. Booch, G. and Brown, A.W., Collaborative Development Environments, Advances in
Computers 59, 2003.

5. Chi, E.H., The Social Web: Research and Opportunities, IEEE Computer, vol.41, no.9,
pp.88-91, 2008.

6. Cubranic, D., Murphy, G.C., Singer, J., and Booth, K.S. Hipikat: a project memory for
software development. IEEE Transactions on Software Engineering, 31(6):446-465, 2005.

7. Dourish, P. and Bellotti, V. 1992. Awareness and coordination in shared workspaces. In
Proc. ACM Conf. Computer-Supported Cooperative Work (CSCW '92), Toronto, Ontario,
Canada, Nov. 1-4, 1992, DOI= http://doi.acm.org/10.1145/143457.143468.

8. Frost, R., (2007). Jazz and the Eclipse Way of Collaboration. IEEE Software, 24(6), pp.
114-117.

9. Herbsleb, J.D., Atkins, D.L., Boyer, D.G., Handel, M., and Finholt, T.A. Introducing
Instant Messaging and Chat into the Workplace. Proc. Int’l Conference on Computer-
Human Interaction (CHI ‘02), Minneapolis, MN, USA, 2002.

10. Holmstrom, H., Conchuir, E.O., Agerfalk, P.J, and Fitzgerald, B. Global Software
Development Challenges: A Case Study on Temporal, Geographical and Socio-Cultural
Distance. Int’l Conf. Global Software Eng. (ICGSE ’06), Florianopolis, Brazil, 3-11 Oct.
2006, pp. 3-11.

11. Jazz Platform Technical Overview,
https://jazz.net/learn/PrintableLearnItem.jsp?href=content/docs/platform-
overview/index.html

12. Kersten, M. Focusing knowledge work with task context. PhD Thesis, University of British
Columbia, 2007.

27

13. Ko, A.J., DeLine, R., and Venolia, G. Information Needs in Collocated Software
Development Teams. Proc. 29th international conference on Software Engineering,
Minneapolis, 2007.

14. Law, A., Ho, A., A study case: evolution of co-location and planning strategy, Proc. Agile
Development Conference ’04, Salt Lake City, Ut, USA, 22-26 June 2004, pp. 56- 62.

15. Merrill, D. 2006. Mashups: The new breed of Web app. An introduction to mashups. IBM
developerWorks. http://www.ibm.com/developerworks/xml/library/x-mashups.html

16. Omoronyia, I. Sharing awareness during distributed collaborative software development.
PhD Thesis, University of Strathclyde, November 2008.

17. Rayhan, S.H., Haque, N. Incremental Adoption of Scrum for Successful Delivery of an IT
Project in a Remote Setup. Proc. Agile Conference (AGILE ’08), Toronto, 4-8 Aug. 2008,
pp. 351-355.

18. Robinson, H., Sharp, H. Organizational culture and XP: three case studies. Proc. Agile
Conference (Agile ’05), 24-29 July 2005, pp. 49- 58.

19. Sarma, A., Noroozi, Z., and Hoek, A. Palantír: Raising Awareness among Configuration
Management Workspaces. Proc. 25th Int’l Conf. on Software Eng. Portland, 2003.

20. Sillito, J., Murphy G.C., and De Volder, K. Asking and Answering Questions during a
Programming Change Task. IEEE Trans. on Software Engineering, 34(4):434-451, 2008.

21. Spencer-Oatey, H. Culturally Speaking: Managing Rapport through Talk across Cultures.
New York: Cassel, 2000.

22. Summers, M. Insights into an Agile Adventure with Offshore Partners. Proc. Agile
Conference (AGILE ’08), Toronto, 4-8 Aug. 2008, pp. 333-338.

23. Yu, J., Benatallah, B., Casati, F., and Daniel, F. 2008. Understanding Mashup
Development. IEEE Internet Computing 12, 5, 44-52.

28

Weaving Eclipse Applications

Fabio Calefato, Filippo Lanubile, Mario Scalas,

1 Dipartimento di Informatica, Università di Bari, Italy
{calefato, lanubile, scalas}@uniba.it

Abstract. The Eclipse platform fully supports the ideas behind software
components: in addition it also adds dynamic behavior allowing components to
be added, replaced or removed at runtime without shutting the application
down. While layered software architectures may be implemented by assembling
components, the way these components are wired together differs. In this paper
we present our solution of Dependecy Injection, which allows to build highly
decoupled Eclipse applications in order to implement real separation of
concerns by systemically applying Aspect Oriented Programming and the
Model-View-Presenter pattern, a variant of the classic Model-View-Controller.

Keywords: Eclipse, Aspect Oriented Programming, Dependency Injection.

1 Introduction

The Dependency Inversion Principle [19] (DIP) states that (both high and low level)
software parts should not depend on each other’s concrete implementation but,
instead, be based on a common set of shared abstractions: one application of the DIP
is the Dependency Injection, also called Inversion of Control (IoC) [11]. From an
architectural perspective, DI allows to explicit the dependencies between software
components and provides a way to break the normal coupling between a system under
test and its dependencies during automated testing [25].

This is possible because the software is composed by aggregating simpler, loosely
coupled objects that are more easily unit-testable [32]. Additionally, by separating the
clients by their dependencies, we also make their code simpler because there is no
need for them to search for their collaborators.

The Eclipse Platform [3],[8] is a collection of frameworks for building integrated
development environments that has expanded to cover also the development of Rich
Client applications [21]. Its building blocks are the Open Services Gateway Initiative
(OSGi) [26] specifications, which define a dynamic module system for Java so as to
offer a plugin-based component model, and the Standard Widget Toolkit (SWT), a
graphic library which provides native application look and feel. However, the Eclipse
platform does not have Dependency Injection built-in.

Dependency Injection has proved to be a valuable architectural asset [11],[30]. In
particular, according to our own experience [4],[5], during the development of the
eConference over ECF [6], a text-based conferencing tool based on Eclipse
technologies developed internally, we integrated this pattern as a common asset to be

29

used for developing every plugin. Rather than creating yet another Dependency
Injection framework, we decided to reuse an already existing solution, while only
providing the necessary glue-code. In this paper we present how we have used Aspect
Oriented Programming to implement Dependency Injection and support the Eclipse
dynamic component model.

The remainder of this paper is structured as follows. Section 2 will present an
outline of the Dependency Injection and its use cases; section 3 will describe the
issues involved in implementing it within Eclipse; section 4 will present the broader
context in which we are applying it. Finally, section 5 will present conclusions and
future work.

2 Dependency Injection

Dependency Injection comes from the research field of Architecture Description
Languages (ADLs), which attempts to assemble or wire components together via
configuration mechanisms.

A component is a unit of software that can be instantiated and is insulated from its
environment by explicitly indicating (via interfaces) which services are provided and
required [23]. The idea of software component comes from the field of electronics
engineering: building software should be like wiring electronics components. As long
as interfaces are compatible, we should be able to replace old components with new
ones, an idea as old as 1968 [22].

The rest of this section provides a brief introduction about the Dependency
Injection in general and the Eclipse component model.

2.1 Background

Component Based Software Engineering (CBSE) has two basic concepts, Component
Types and Component Instances, which can be respectively mapped to Classes and
Instances in Object Oriented Programming (OOP).1

More specifically, in Java a class may be seen as a component declaration, thanks
to the definition of the implemented interfaces, which can be used as a description of
the services it provides. Nonetheless, a class definition fails to declare its
dependencies and some kind of convention is required to describe which interfaces
are required. This is where containers and configuration mechanisms kick in (see
Figure 1).

Clients relinquish to directly instantiate objects and, instead, request them to the
container. The latter will use its own configuration, describing the object dependency
graph, to retrieve such an instance and return it to the client for usage.

1 Within the rest of this paper we will use the terms "objects" and "components" as synonyms

unless we explicitly provide a different meaning for the different cases.

30

Configuration

Object

Collaborator

Collaborator

2. Container configures
the object …

1. Request an object

3. … and returns it

4. Client starts
using the object

Fig. 1. Dependency Injection

In this scenario, the container itself becomes a key component of a software
architecture: it must be boot-strapped before the application starts running and its
lifecycle is parallel to the application's. When included in full-fledged web application
frameworks, like Spring [30], the container is transparent to the application code: the
application must be still aware of the container services but must not care about
bootstrapping it since the web framework is handling this task by integrating itself
within the application server infrastructure (i.e., a J2EE Application Server). We will
call these managed containers.

In other uses cases, the container must be explicitly started by some initialization
code before it can be used by the client: in this case the client must have direct access
to container instance in order to perform requests for objects. We will call these
unmanaged containers. Integrating a container within the Eclipse Platform is such a
case.

Historically, three ways that allow clients to explicit their required dependencies
are used:

� Type 1 or Interface-based injection, where clients must implement specific
interfaces in order to tell the container which collaborators they need.

� Type 2 or Setter Injection, where clients declare their dependencies by the
means of setter methods, which accept specifics collaborator types.

� Type 3 or Constructor Injection, where clients’ constructor parameters are
their dependencies.

Type 1 is nowadays an inheritance from the past. Setter injection supports the Java
Beans convention about class' properties: the setter methods will be used by the
container to inject the dependencies. While this is a simple solution, it also opens the
class contract by allowing the dependency to be changed at a later time. Constructor
injection is stricter about the class contract: dependencies are provided at object
instantiation-time and can never be changed as long as an object is alive.

In order to write container configurations, a Domain Specific Language [10]
(DSL) is required. A DSL (such as CSS, regular expressions and SQL) is a language

31

targeted for a particular and limited purpose, not a fully fledged programming
language.

A DSL can be internal, that is, implemented by using an host language, an
approach popularized by the Ruby language, often providing a fluent API.

External DSLs, instead, use their own syntax and require a parser to be used. In the
case of Dependency Injection, XML has been the most used language, although its
syntax badly suits the purpose because of its verbosity-over-expressiveness ratio.

The appearance of built-in annotations within the Java platform from the release
5.0 has enabled an additional way for declaring dependencies, thus pushing several
container projects, like Google Guice [15], Pico Container [28] and even Spring, to
opt for internal DSLs. The client code will then use library-provided annotations to
mark methods or even fields that have to be used to inject required objects whereas
the container will use class introspection to scan for annotations and set the required
object references.

Internal DSLs have multiple advantages over external DSLs. With an internal
DSL: (1) developers have just a single source file to track; (2) the fluent interface is
written in the same programming language of the application (e.g., Java), which
typically benefit from strong refactoring tools available in many modern IDEs; (3)
there is early syntax check. By converse, with internal DSL an abuse of annotations
may produce a less readable source code.

Hence, we decided for an internal DSL-based solutions and opted in particular for
the Google Guice framework because of the existence of an extension, Peaberry [27],
which supports the OSGi component model.

2.2 The OSGi Component Model

OSGi is a set of specifications that define a dynamic module system for Java. In
OSGi, components may hide their implementations from other components by the
means of Services, objects shared across several components (see Figure 2).

Fig. 2. OSGi publish-subscribe mechanism (from http://www.osgi.org)

Services use a publish-subscribe pattern: components start listening for specific
services registered by other bundles. The Service Registry framework takes care of
tracking down the service instances while specific API is to be used by subscribers, to
get actual service instances, and publishers, to make service implementations
available to the rest of the system.

32

Services are deployed within bundles (a synonym of plugin) and the latter can be
installed, removed, or updated without shutting down the whole system. Hence,
because services can become available or unavailable over time, a service tracking
API is needed.
The vision that OSGi designers intended to endorse is that of a collaborative
environment where applications emerge by dynamically assembling different
components with no a-priori knowledge of each other (see Figure 3). One of the
biggest advantage of OSGi consists in the ability to update, change or introduce new
functionalities in a running software system without shutting it down, which is a why
OSGi is interesting for application server vendors.

Fig. 3. The OSGi architecture layers (from http://www.osgi.org).

Application bundles use the framework services, such as the publish-subscribe
mechanism, the dynamic lifecycle management, and standard Java security. The
whole system is based on the concept of modularity: bundles are just plain JAR files
with additional OSGi metadata, which define public and private parts. By versioning
bundles and, therefore, services, it is possible to have within the same Virtual
Machine different versions of the same classes.

Having to deal with dynamic services poses an important question when thinking
about a Dependency Injection of OSGi services. In this case, infact, a static injection
is not suitable since object structure graph is going to change over time. A simple
solution is the introduction of service proxies, as implemented by the
Guice/Peaberry. Service proxies act like placeholders for real services: when the
actual service component is available, then the proxy passes the call on, otherwise it
throws a Service Unavailable exception.

While there are several implementations of the OSGi platform specifications, the
current reference implementation is the Eclipse Equinox runtime, the core on top of
which the whole Eclipse eco-system is built. In addition to OSGi services, the Eclipse
platform historically supports another mechanism for extending software
functionalities through platform extensions (plugins). Extensions allow components to
be declared and made available to the system, without the need to be loaded until they
are actually used (lazy loading).

33

3 Weaving Dependency Injection

The Eclipse Platform does not support Dependency Injection out-of-the-box:
integrating it becomes a framework integration problem, in this particular case, of the
Guice and the OSGi frameworks. This section first describes the usage of AOP and
then outlines the problems of integration and related solutions.

3.1 AOP and Eclipse

Aspect Oriented Programming [16] (AOP) is a programming paradigm addressing the
separation of concerns into reusable modules called aspects. AOP complements
classical OOP rather than replacing it: while classes modularize primary application
concerns (like domain entities, business services, or user interface views), aspects
encapsulate secondary, or system, concerns, such as transactions, tracing, security
policy enforcement, or performance monitoring.

Merging classes and aspects together is a process called weaving and it is usually
performed at bytecode level. The weaving process may be executed at compile time
(compile time weaving, CTW), by the means of an ad-hoc compiler, or at load time
(load time weaving, LTW), by a weaving agent that intercepts class loading
operations performed by the Java Virtual Machine. At the base of AOP there is the
Join Points Model, an abstraction for the OOP language constructs, which exposes
where aspects can be hooked in the code (e.g., method calls or constructor
invocations). An aspect, then, is a construct composed by two parts: a rule-based
section, specifying which joint points to capture, and a body part, containing which
code to apply when the rules match.

AspectJ [17] is an AOP solution for Java that has tooling support within the
Eclipse IDE [2]. Supporting AOP within a dynamic environment as Eclipse poses
issues with the aspects weaving: (1) plugins hosting aspects that were woven on
classes belonging to other plugins may be become unloaded (i.e., because updated) so
the original unwoven classes should be restored before any other re-weaving is
possible; (2) new bundles hosting new aspects may be installed within the system and
needed to be woven on already loaded classes. All of these cases can only be
supported through a careful implementation of LTW, which is the purpose of the
Equinox Aspects project [9], which provides new metadata for supporting the two
aforementioned scenarios, a set of bundles exporting the weaving service as an OSGi-
compliant weaving agent, and a bytecode caching service to improve runtime
performance.

The most recent implementation also supports language metadata (through to Java
annotations) enabling a declarative way for expressing concerns ([18]).

When implementing Dependency Injection as a system concern, the primary
domain concern is the application code requesting the provisioning of collaborators.
A possible implementation of the former is detailed in the next section.

34

3.2 AOP as gluecode

The idea of using Dependency Injection as a system-wide cross-cutting concern and
as a reusable abstract base aspect is not new: frameworks like Spring already use it
[31]. In particular, programmers mark fields to be injected with ad-hoc annotations
like @Autowired so that a special Spring facility, called a weaving agent, will scan
components and provide the required dependencies at objects' instantiation time. AOP
is then used in order to match the annotations and wire the required code to perform
the operation. Nevertheless, implementing the same idea in a dynamic component
architecture like OSGi (and Eclipse) requires, instead, special care dealing with the
services' dynamic behavior and the different classloading architecture. In fact, an
aspect performing Dependency Injection needs to: 1) have access to the
BundleContext objects (different for every plugin) in order to access the OSGi
services; 2) be provided with a configured container instance (i.e, a Guice container
instance); 3) support plugins loading/unloading and, consequenty, aspects
corresponding weaving/unweaving (for example, by using Equinox Aspects). In this
context, such an aspect will contain all the code necessary to wire objects together
with their container, with concrete aspects only differing for the scope of its
application (i.e., the packages to weave).

#withinScope()
#getModules()
-doInjection()
-createInjector()

-injector
AbstractDependencyInjection

#getModules()
DependencyInjection

+configure()
BundleModule

+configure()

«interface»
Module

«uses»

Client bundle

Framework bundle

Fig. 4. Modularization of Dependency Injection.

The ability to reuse a common implementation for different contexts is really
useful when we have to deal with plugins. Because of the Eclipse platform specifics,
in fact, we need to have different concrete Dependency Injection aspects, one for each
plugin.

In this model a plugin may publish one or more service objects implementing a
contract, that is, a standard Java interface. These services are tracked by the OSGi
Service Registry and made available to the rest of the system. Client plugins may
request implementations of such contracts and use them as seamless Java Objects
with no overhead (apart from the retrieval operations). By intercepting framework
events, clients may track their needed dependencies but, in this model, application
code intermixes business code with system code. Often, it may be simpler to wrap the
objects behind a Proxy and have the latter deal with the OSGi behavior, throwing

35

exceptions if clients try to use unavailable objects. This is also the solution adopted by
Peaberry.

Additionally, to track service objects, the OSGi API is accessible only through the
BundleContext object which is passed to the plugin Activator's start()/stop() methods:
this is the standard mechanism provided by the framework to enable client bundles to
be notified about events. The bundle context is obviously different for each plugin, so
we have to implement a different Dependency Injection aspect for each plugin in
order to capture the right bundle context.

In Eclipse-based application, developers are required to provide implementations
of standard framework interfaces or classes in order to take advantage of the Eclipse
facilities. Frameworks are designed for adaptation and extension, not for integration
[20] and Eclipse is no exception since there is little room for configuring the objects
that are being created by the platform.

One solution would be to employ the Singleton pattern for locating the container
instance and have the newly instantiated object to inject itself, as shown in Listing 1.

public class MyCommandHandler extends AbstractHandler {

@Inject private SomeService someService;

public MyActionCommand() {

// Use Singleton to retrieve the container

// and call its services ...

Container.getInstance().configure(this);

}

public Object execute (ExecuteEvent event) {

someService.doSomething();

return null;

}

}

Listing 1. Usage of the Singleton pattern to perfom injection of platform created objects

At runtime, when the default constructor is invoked by the Eclipse framework, the
container is also invoked and the dependency injected. Employing Singletons to gain
access to the container instance is simple to implement but also defeats the decoupling
we are searching in our software system because we are tightly wiring the specific
container instance with the client code. Though there is no real other way out with
standard OOP but it is still possible to achieve the same effect without any

36

“hardwiring” of the dependency between the client code (our command handler) and
the specific container instance.

The basic idea behind this is to employ the (concrete) Dependency Injection aspect
to effectively act as glue-code between the application code instantiated by Eclipse
and the container while keeping both separated.

The first action of the Dependency Injection aspect is to intercept the call of the
start() method to capture the BundleContext object and the stop() method in order to
release service objects when they are no more needed (because OSGi uses reference
counting to know when a service object can be released). After this, the Dependency
Injection aspect will intercept the creation of instances of classes annotated with the
@Injectable annotation and configure them. The resulting effect at runtime is the
same as in previous solution (i.e., the constructor will get modified at runtime by the
weaving agent), but the code concerns remains separated and testable in isolation.
Thus, we are able to inject even objects that are written by developers, but instantiated
by the Eclipse Framework (e.g., views or command handlers). Doing so, we are using
AOP as an integration layer for different frameworks (Eclipse and Guice) in order to
bind the application components together [29] (i.e., views with their business service
objects), which is also one of the basic steps we need in order to proceed towards
further developments, as outlined in the next section.

4 Implementing Model-View-Presenter

Separating presentation from domain means ensuring that no part of the domain code
refers to any part in the presentation code [14]. This means that, when writing a
WIMP (Windows, Icons, Mouse and Pointer) GUI application, it should also be
possible to write a command line interface with the same functionalities without
touching the domain code.

Systematically applying the Model-View-Controller [13] (MVC) architectural
pattern is a way to enforce separation of concerns since it organizes GUI applications
along three primary concerns:

� Model, encapsulating the domain logic behind a set of abstractions (classes
and interfaces);

� View, showing the Model's content and notifying the input events to the
Controller;

� Controller, which reacts to Model and View events according to some
behavior.

Model View Presenter [12] (MVP) is an MVC-variant which further separates
Model and View so that they no longer knows about each other; instead, the
Controller (called Presenter) is the only listening to both layers' events, driving them
according to some application logic, which can be tested.

Separation of presentation and domain logic means not only a way to increase the
reuse software parts, but also to design better testable software. In fact, while tools
exist to capture mouse clicks for web user interfaces, the resulting macros are tricky
to maintain. Separating the domain code improves testability: the greater testability is,
the better design becomes.

37

Additionally, MVP can be applied it in a test-driven process by using the
Presenter-first technique [1]. Because this approach avoids dealing with the UI
directly, the views must be simple as they only present results or perform data-
binding. Testing the presenter means unit-testing it. Dependency Injection finds its
application also during testing to assemble the right MVP triplets.

X

View

Presenter

Model

<<observes
and

changes>>

<<observes
and

changes>>

Fig. 5. Modularization of Dependency Injection.

5 Conclusions and future work

At this time we have implemented the Dependency Injection bundle in a project of
ours, eConference [4], [5], [6]. eConference is an Eclipse RCP-based distributed
meeting system. The primary functionality provided by the tool is a text-based group
chat, augmented with agenda, meeting minutes editing, and typing awareness
capabilities. Around this basic functionality, other features have been built to help
organizers to control the discussion during distributed meetings. The tool has been
successfully used to offer the students the opportunity to experience development of
software in geographically, distributed multi-cultural teams [7]. The current
generation of eConference, eConference-over-ECF, is built on top of the Eclipse
Communication Framework and has won the 2006 Eclipse Innovation Award.

As future work, we expect to proceed through the following steps:
1. Extract the framework bundles (like Dependency Injection) from

eConference in an order to define a reusable tool for other applications.
2. Perform an architectural check-up of eConference.

38

3. Design and implement the MVP test and runtime bundles by using
eConference-over-ECF as a proof of concept (e.g., the whiteboard and file
transfer bundles)

4. Extend Guice and Peaberry in order to support Eclipse concepts and make
the process of writing tests for this environment a streamlined process.

5. Get feedback from academic as well as industry projects.

Acknowledgement

This work has been supported by the 2008 IBM Faculty Award.

References

1. Alles, M., Crosby, D., Harleton, B., Pattison, G., Erickson, C., Marsiglia, M., Stienstra, C.,
“Presenter First: Organizing Complex GUI Applications for Test Driven Development”,
Proceeding of the Agile Conference, 23-28 July 2006

2. AspectJ Development Tools, http://www.eclipse.org/ajdt
3. Birsan, D., “On Plug-ins and Extensible Architectures”, Queue, ACM, vol. 3, n. 2, March

2005, pp. 40-46.
4. Calefato, F., Lanubile, F., Scalas, M., "Porting a Distributed Meeting System to the Eclipse

Communication Framework", Proceedings of the 2007 OOPSLA workshop on eclipse
technology eXchange. p. 46-49, New York, 2007

5. Calefato, F., Lanubile, F., Scalas, M., "Evolving a Text-Based Conferencing System: An
Experience Report", Collaborative Computing: Networking, Applications and Worksharing.
p. 427-431, Los Alamitos, 2007

6. Calefato, F., Scalas, M., "Adopting the Eclipse Communication Framework: The Case of
eConference", Proceedings of the 3rd Italian Workshop on Eclipse Technologies (Eclipse-IT
2008). Bari, Italy, 2008

7. Damian, D., Lanubile, F., Mallardo, T., "An empyrical Study of the Impact of Asynchronous
Discussions on Remote Synchronous Requirements Meetings", Lecture Notes in Computer
Science, Vol. 3922, 2006

8. Eclipse Platform, http://www.eclipse.org
9. Equinox Aspects, http://www.eclipse.org/equinox/incubator/aspects/
10. Fowler, M., "Domain Specific Language" (Book web draft),

http://martinfowler.com/dslwip/
11. Fowler, M., “Inversion of Control Containers and the Dependency Injection pattern”,

http://martinfowler.com/articles/injection.html
12. Fowler, M., “Model View Presenter”,

http://martinfowler.com/eaaDev/ModelViewPresenter.html
13. Fowler, M., “Patterns of Enterprise Application Architecture”, Addison Wesley

Professional, 1st edition, 2002
14. Fowler, M., "Separating User Interface Code", IEEE Software, March/April 2001
15. Google Guice, http://guice.googlecode.com
16. Kiczales,G., Lamping, J. et Al., “Aspect Oriented Programming”, Proceedings of the

European Conference on Object-Oriented Programming, vol.1241, pp.220-242, 1997
17. Laddad, R., “AspectJ in action”, Manning, 2004

39

18. Laddad, R., "AOP and metadata: A perfect match",
http://www.ibm.com/developerworks/java/library/j-aopwork3/

19. Martin, R. C., "Dependency Inversion Principle",
 http://www.objectmentor.com/resources/articles/dip.pdf

20. Mattson, M., Bosch, J., Fayad, M. E., “Framework Integration: Problems, Causes,
Solutions”, Communications of the ACM, October 1999, Vol. 42, No. 10.

21. McAffer, J., Lemieux, J-M., “Eclipse Rich Client Platform: Designing, Coding, and
Packaging Java™ Applications”, Addison Wesley Professional, 2005.

22. McIlroy, M. D., "Mass Produced Software Components", "Software Engineering, Report on
a conference sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th
October 1968", Scientific Affairs Division, NATO, Brussels, pg. 138-155, 1969 (a transcript
can be found at http://www.cs.dartmouth.edu/~doug/components.txt)

23. McVeigh, A., “The Rich Engineering Heritage Behind Dependency Injection”,
http://www.javalobby.org/articles/di-heritage/

24. Melnik, G. , Maurer, F., Chiasson, M. Executable Acceptance Tests for Communicating
Business - Requirements: Customer Perspective. In Proc. of the Agile Conference
(AGILE’06), IEEE Computer Society, pp. 35-46, July 2006.

25. Meszaros, G., “xUnit Test Patterns”, Addison Wesley, 2007
26. OSGi Consortium, Open Service Gateway initiative (OSGi), http://www.osgi.org
27. Peaberry, http://peaberry.googlecode.org
28. PicoContainer, http://www.picocontainer.org
29. Schmidt, D.C., Gokhale, A., Natarajan, B., “Leveraging Application Frameworks”, Queue,

July/August 2004.
30.Spring Framework, http://www.springframework.org
31. Walls, C., Breidenbach, R., "Spring in Action", Manning Publications, 2008
32.Weiskotten, J., “Dependency Injection and Testable Objects”, Dr. Dobbs Journal,

http://www.ddj.com/development-tools/185300375

40

An Eclipse Plug-in for Design Pattern Recovery

Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino,
Michele Risi, Genoveffa Tortora

Dipartimento di Matematica e Informatica

Università di Salerno,
84084 Fisciano (SA), Italy

{adelucia,deufemia,gravino,mrisi,tortora}@unisa.it

Abstract. Design patterns are not only beneficial to the forward engineering
process but they also help typical reverse engineering activities such as design
recovery and program understanding. Indeed, conspicuous insight on the
software structure and its internal characteristics are provided by design
patterns recovered from source code. In this paper, we present an Eclipse plug-
in implementing a reverse engineering tool able to detect pattern instances in
Java programs. The plug-in exploits a two phase approach for the recovery of
structural design patterns. In the first phase a set of candidate is identified by a
visual language parser which considers the design structure only, whereas the
second phase validates the candidates through a source code analysis.
Moreover, the presented tool integrates reporting facilities and a graphical
representation using UML class diagram on the recovered pattern instances.

Keywords: Reverse engineering, Design pattern recovery, Eclipse plug-in,
Source code analysis.

1. Introduction

A design pattern can be seen as a set of classes, related through aggregation and
delegation, which represents a partial solution to a common non-trivial design
problem [10]. Design patterns are widely used to separate an interface from the
different possible implementations, to wrap legacy systems, to encapsulate command
requests, to use different platforms, and so on [10]. They represent a useful technique
in forward engineering since they allow reusing successful practices, to improve
communication between designers and to share knowledge between software
engineers. However, design patterns also represent useful architectural information
that can support a rapid understanding of software design and source code [1, 4, 18,
21]. In reverse engineering of OO software systems they allow to capture relevant
information which help the comprehension of the adopted solution. In particular, if a
software engineer can understand that a particular design pattern has been used as part
of an OO design, he/she can understand the capabilities and limitations of that part of
the system.

The extraction of design pattern instances from source code can provide reverse
engineers with considerable insight on the software structure and its internal
characteristics. Unfortunately, since pattern descriptions are abstract and informal,

41

and not explicitly documented in software source code, their recovery has to be
manually performed in most cases. This is an extremely time consuming task.
Therefore, researchers have proposed techniques to automatically recover design
patterns in a program, which perform either a static analysis by considering the
structural requirements of a pattern, or they combine a static and dynamic analysis, by
considering both structural and behavioral requirements. Obviously, for design
patterns which comprise significant behavioral aspects the application of static
analysis only leads to the recovery of many false positives, i.e., patterns that satisfies
the structural requirements of a pattern, while violating its behavioral requirements.

In [6] we have presented an approach to recover structural design patterns from
OO source code, which combines a diagram-level analysis, by using a parser for
visual languages, with a source code-level analysis. The recovery process is organized
in two phases. In the first phase, design pattern instances are identified based on the
design structure only by using a recovery technique based on visual language parsing
[5]. The design pattern recovery problem is reduced to the problem of recognizing
subsentences in a class diagram, where each subsentence corresponds to a design
pattern specified by a grammar. In the second phase the identified candidate patterns
are validated by performing a source code analysis, which eliminates false positives
and consequently increases the precision of the recovery approach. To validate the
proposed design pattern recovery approach, we developed a tool, named DPRE
(Design Pattern Recovery Environment), which supports the whole recovery process.

In this paper we present the Eclipse plug-in implementing our recovery approach.
The motivations underlying the implementation of the plug-in are that Eclipse is the
most used open source development framework and it is strongly based on the
concept of extending its functionalities through the implementation of plug-ins.
Moreover, the Eclipse platform encourages the exploitation of the functionalities of
other plug-ins and modules of the Eclipse framework improving and speeding up the
development process.

The paper is organized as follows. Section 2 focuses on the design pattern recovery
process implemented by DPRE. In Section 3 details concerning the proposed plug-in
for Eclipse to recover design pattern instances are shown. In Section 4 related work
on design pattern recovery tools is described. Conclusion and future work are given in
Section 5.

2. The Design Pattern Recovery Process

A design pattern is composed of a small number of classes that, through delegation
and inheritance, provides a robust and modifiable solution [10]. Design patterns are
classified as structural, which concentrate on object composition and their relations in
the runtime object structures, creational, which address object instantiation issues, and
behavioral, which focus on the internal dynamics and object interaction in the system.

The design pattern recovery process we propose focuses on structural design
patterns only, since we only take into account static information. Indeed, structural
design patterns are usually described through a class diagram detailed with method

42

invocations. This has allowed us to define a recovery technique able to work directly
on the class diagram representing the input source code.

Fig. 1 shows the proposed design pattern recovery process, where rectangles
represent data, while rounded rectangles represent phases of the process. During the
Preliminary Analysis information proper to recover design patterns is extracted from
input OO source code and stored in a repository. In particular, class diagram
information such as the name and type of classes, inheritance and association
relationships are stored to be used for the Structural Analysis (in Fig. 1 this
information are referred as structural information). Moreover, information on method
declarations and invocations useful to perform the Low-level Analysis are also stored.

Fig. 1. The design pattern recovery process.

Instances of design patterns are identified by analyzing the class diagram structure
during Pattern Recovery. This recovery process is organized in two phases. In the first
phase, the candidate design patterns are identified at a coarse-grained level by
analyzing the class diagram information obtained during the Preliminary Analysis. In
particular, a set of candidate instances of design patterns are identified by analyzing
the class diagram constructed from the source code.

43

The recovery technique applied in the first phase (Structural Analysis) is based on
visual language parsing. In particular, the candidate design patterns are identified at a
coarse-grained level by analyzing the class diagram information through a visual
language parser [6]. In particular, once the class diagram has been abstracted from the
source code, the problem of design pattern recovery is reduced to the problem of
recognizing subsentences in a class diagram, where each subsentence corresponds to a
design pattern instance. Indeed, the idea is to specify the class structure of the design
patterns to be recovered in terms of a grammar specification from which it is possible
to obtain the corresponding parser automatically [5].

In the second phase (Low-level Analysis), a fine-grained source code analyzer
checks if the identified candidate patterns are correct patterns or false positives. This
is accomplished by verifying at source code level the declarations and the invocations
of the methods of the classes involved in the candidate design patterns. Observe that
the design pattern recovery process has been implemented to recover the structural
design patterns Adapter, Bridge, Composite, Decorator, Façade and Proxy. The
definition of the recognition algorithms for the considered structural design patterns,
checks, and more details on the static analysis phase can be found in [6].

3. DPRE Eclipse Plug-in

As introduced by Gamma and Beck in [11], Eclipse can be considered as a
technology, a development platform, or a group of tools. Therefore Eclipse is a
collection of both plug-ins and access points of plug-ins. To take advantage of the
latest development techniques and to enhance DPRE’s extensibility [6], we chose the
Eclipse framework as our development platform and decided to implement DPRE as
an Eclipse plug-in. In the following we describe the architecture of the plug-in (shown
in Fig. 2) and how it implements the proposed design pattern recovery process.

Fig. 2. The architecture of the DPRE Eclipse plug-in.

The plug-in exploits the code analysis tool Source Navigator [22] in order to
implement the Extractor module in Fig. 2. Source Navigator is able to recover almost

44

all the necessary information and organize it in a structure suitable for our purposes
and supports several programming languages, such as C++, Java, and Python, and
provides APIs allowing programmers to construct a specific parser. However, Source
Navigator is not able to recover some relevant information for design pattern
identification. As an example, in case of Java the tool does not extract the inheritance
relationships between classes where the super class is an interface. To overcome these
deficiencies of the tool, we have developed an ad-hoc scanning module to recover the
missing information from the source code. The information on the source code is
structured as a set of tables storing information on classes, relationships between
classes, method declarations, and method invocations, and so on. The adoption of this
data representation makes the recovery process independent of the programming
language adopted for the input OO code. Indeed, the information is organized
extracting the syntactic features common to OO programming languages.

The Structural Analysis of the plug-in has been implemented as an LR-like parser,
obtained from the design pattern grammar specification [6]. The input to the parser is
the set of tables obtained from the Extractor module, while the output is a set of
textual descriptions representing the candidate design pattern instances. In particular,
the output descriptions include the qualified name of the classes involved in the
pattern instances together with the low-level checks to be performed on them.

Fig. 3. The graphical interface of the DPRE Eclipse plug-in.

The Low-level Analysis takes in input the outputs produced by the Extractor
module and the Structural Analysis and returns the set of textual descriptions
representing the recovered design pattern instances. It analyzes the candidate

45

descriptions in order to invoke the methods accomplishing the low-level checks on
the classes involved in the pattern instances. The pattern descriptions that succeed the
checks of the methods are given in output.

Fig. 3 also shows the use of the plug-in during the design pattern recovery process
of JHotDraw 5.1 (8300 LOC and 155 classes), one of the analyzed case studies. The
graphical interface allows users to select (by clicking on the Select Folder button) the
directory containing the source code. At this point the plug-in provides a window for
choosing the path of the folder where the source code files of the system to be
analyzed are stored. Note that these files have to be stored on the local file system of
the computer where the plug-in is installed. Successively, the recovery process is
started by accomplishing the Preliminary Analysis (by clicking on the Browse
button). Then, the user carries out the Structural Analysis and the Low-level Analysis
of the recovery process by clicking on the Extract and Validate buttons, respectively.

Fig. 4. The recovered design patterns.

Fig. 4 shows a screen-shot of the plug-in after the design pattern recovery process.
The dpr.ecore_diagram view visualizes the UML class diagram using the information
carried out during the Preliminary Analysis phase. These information are properly
stored in a data structure and saved into text files. In particular, the Package Explorer
is updated and shows the list of these files created and used during the recovery
process. The plug-in uses these files to restore the views and the UML class diagram
every time it is lunched avoiding to re-execute the recovery process for each analyzed
OO source code.

Observe that the user can visualize the recovery results by clicking on the Patterns

46

found button. In particular, the plug-in shows a table containing the statistics on the
pattern instance recovered, and for each recovered pattern instance the user can
visualize the classes involved in the pattern and the role they play. As an example, for
the considered case study (i.e., JHotDraw 5.1), the candidates extracted during the
Structural Analysis were 920, whereas the final number of recovered design pattern
was 129 (after the Low-level Analysis). In particular, Table 1 depicts the pattern
instances identified by the plug-in taking into account the Structural Analysis, i.e., the
first phase of the recovery process, and the complete recovery that includes the Low-
level Analysis, i.e., the second phase of the recovery process.

Table 1. Recovered instances of design patterns (JHotDraw 5.1).

 1st phase 2nd phase
Adapter 506 35
Bridge 404 86
Composite 5 0
Decorator 0 0
Façade 5 8*
Proxy 0 0

* For Façade pattern the low-level checks allow to detect for each
candidate instance many façade actual instances.

Fig. 5. The selection and the visualization of recovered design patterns.

47

Selecting a particular instance, the involved classes are highlighted in the UML
class diagram shown in the dpr.ecore_diagram view. In particular this view is
suitably zoomed in order to show all the classes composing the recovered design
pattern. As an example, Fig. 5 shows the selection of a pattern in the list of retrieved
Bridge patterns and how the classes AbstractHandle, DiagramView,
PolygonScaleHandle and StandardDrawingView in the UML class diagram view are
highlighted. Moreover all the relationships involved in the design pattern are also
shown.

Finally, to control the recovery process the plug-in provides a preference tab-sheet,
as shown in Fig. 6. In particular, the user can choose the structural design pattern to
be considered in the recovery process and the low-level checks to be performed on
them during the Low-level Analysis.

Fig. 6. The preferences tab-sheet of the DPRE Eclipse plug-in.

4. Related Work

Some evaluation and classification of design pattern recovery approaches and tools
supporting them have been provided in the literature taking into account the employed
pattern identification strategy, the representation used for coding design patterns, the
kind of support they provide for recognition (i.e., manual, semi-automatic or
automatic pattern recovery), the type of design patterns they are able to recover, the
software analyzed to assess the effectiveness of the proposed pattern recovery

48

strategies (see e.g., [6, 12]). In the following we provide information on some the
tools provided to identify design pattern instances.

The Pat system is able to recover instances of structural design patterns using
information on the pattern class structure [17]. In particular, design patterns are
represented as Prolog rules whereas source code is expressed in terms of Prolog facts.
Thus, instances of design patterns are retrieved by applying a Prolog query. Some
information such as the difference between concrete and abstract classes is not
extracted. The approach is automatic, but false positives have to be removed
manually.

CrocoPat is a tool able to automatically recover design pattern instances from
object-oriented programs, by exploiting relational expressions to specify properties of
a system [2, 3]. In particular, a relation manipulation language is used to manipulate
n-ary relations and the effectiveness of the system is based on binary decision
diagrams which represent the relations compactly. CrocoPat works in three steps. In
the first step the data relevant for the analysis is extracted from source code while in
the second step the pattern of interest have to be defined by using a pattern
specification language which exploits the relations stored in a relation file. The third
step concerns the analysis, where CrocoPat translates the relations, contained in the
relation file, into binary decision diagrams [2, 3].

SPOOL is a tool that retrieves design patterns from C++ code based on structural
descriptions of design patterns [16, 17]. The relevant C++ source code elements are
represented in UML/CDIF format, whereas the patterns are represented as abstract
design components and stored in a central repository. The environment of SPOOL has
a three tier architecture and supports both forward and reverse engineering of design
pattern instances. The tier at the bottom provides physical storage of the information
on the reverse engineering model and on the design. The tier at the top is represented
by the end-user tools providing functionality like the ones for capturing source code
and for visualization, while the object-oriented schema of the reverse engineering
model represents the tier in the middle. SPOOL supports the manual, semi-automatic,
and automatic recovery and the design patterns retrieved are Template Method,
Factory, and Bridge.

The approach proposed in [14, 15] combines static and dynamic analyses to
recover design pattern instances. In particular, two Prolog-based languages, namely
SanD-Prolog and SanD, are used to specify predicates. The input source code is
represented as a set of predicates that encode the corresponding AST (Abstract Syntax
Tree). During static analysis queries are carried out on the source code representation
based on the static specification of the pattern. The dynamic analysis monitors the
execution of the program and classifies the pattern instance candidates obtained by
the static analysis according to their conformance to the expected pattern behavior. In
particular, the employed predicates specify the relevant states and state transitions of a
pattern’s behavior to detect in a concrete program run.

The tool PINOT implements a recovery approach based on a static analysis which
exploits inter-class relationships [19]. The program behavior is efficiently recognized
using a lightweight static program analysis. These analysis are performed on symbol
tables and ASTs constructed by a compiler.

The approach proposed in [8, 9] is based on the use of matrices and weights to
recover instances of design pattern and is implemented in the DP-Miner toolkit. In

49

particular, DP-Miner builds a matrix from source code where all classes in the system
correspond to the rows and columns, and the relationships between each pair of
classes to be the value of the corresponding cell in the matrix. The relationships
between classes are encoded in each cell value by using different prime numbers and
combination of relationships by product of prime numbers. Since the information on
design pattern are encoded as matrix and weights, the discovery of design patterns is
reduced to matching such matrices and weights in arithmetic computations.

The approach proposed in [23] to automatically detect modified design patterns is
based on the use of graphs. The software and the design patterns to be retrieved are
represented as graphs and matrices are used to represent important aspects of their
static structure. Then, a graph similarity algorithm is employed to detect instances of
candidate design patterns. The idea is to apply the similarity algorithm to clusters of
hierarchies in order to restrict the analysis to smaller subsystems rather than to the
whole system. The proposed recovery methodology has been implemented as a Java
program, which is able to identify instances of Adapter/Command, Composite,
Decorator, Factory method, Observer, Prototype, Singleton, State/Strategy, Template
method, and Visitor patterns.

The recovery technique and corresponding tool (named DEMIMA) proposed in
[13] are based on a multilayered approach able to identify idioms pertaining to the
relationships between classes and design motifs characterizing the organization of the
classes1. The first layer is devoted to the construction of models from source code, by
using a language whose metamodel is inspired by UML and includes all the elements
of a Java system like class, interface, method, and so on. In the second layer
programming idioms are identified, which specify specific characteristics of classes or
relationships between them. In the third layer the language used to describe the source
code is also used to represent design motifs, and microarchitectures similar to the
specified design motifs are recovered from the model representing the source code by
using explanation-based constraint programming and constraint relaxation.

5. Conclusion and Future Work

Software system maintenance requires a deep comprehension of the existing system
in order to modify and integrate it with new or changing requirements. Design
patterns represent useful architectural information that can support a rapid
understanding of software design and source code. In reverse engineering of OO
software systems they allow to capture relevant information which help the
comprehension of the adopted solution [1, 4, 18, 20, 21].
We have presented the Eclipse plug-in implementing the two phase design pattern
recovery approach we proposed in [6]. In the first phase the class diagram extracted
from the source code is analyzed for identifying design structures that are candidate
pattern instances. This is accomplished using a recovery technique based on visual
language parsing [5]. In the second phase the code of the classes involved in the
identified candidate patterns is examined for verifying their compliance to the code-

1 It is worth noting that the authors used the term design motif to indicate design pattern and

microarchitecture to refer to design pattern instance.

50

level constraints defined by the corresponding structural patterns. These checks allow
us to eliminate many false positives and consequently to increase the precision of the
approach.

Future work will be devoted to integrate the Eclipse plug-in with other
functionality and modules of the Eclipse framework improving and speeding up the
development process. In particular, we will improve the design pattern instances
representation in the UML class diagram providing more information about the
recovered pattern (such as the involved methods) and reorganizing the layout respect
to the role played by the classes involved in the design pattern instance. Moreover, we
are extending the Eclipse plug-in with another module for the detection of behavioral
design patterns according to the approach proposed in [7].

References

1. G. Antoniol, G. Casazza, M. Di Penta, R. Fiutem, “Object-oriented design pattern
recovery”, Journal of Systems and Software, 59, 2001, pp.181-196.

2. D. Beyer and C. Lewerentz, “CrocoPat: Efficient pattern analysis in object-oriented
programs”, in Proceedings of the International Workshop on Program Comprehension
(IWPC’03), Portland, Oregon, USA, 2003, pp. 294–295.

3. D. Beyer, A. Noack, and C. Lewerentz, “Efficient Relational Calculation for Software
Analysis”, IEEE Transactions on Software Engineering, 31(2), 2005, pp. 137–149.

4. K. Brown, “Design reverse-engineering and automated design pattern detection in
smalltalk”, Master Thesis, North Carolina State University, Raleigh NC, 1996.

5. G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino, M. Risi, “Design Pattern Recovery
by Visual Language Parsing”, in Proc. of European Conference on Software Maintenance
and Reengineering (CSMR’05), 2005, pp. 102-111.

6. A. De Lucia, V. Deufemia, C. Gravino, M. Risi, “Design Pattern Recovery through Visual
Language Parsing and Source Code Analysis”, Journal of System & Software, 18(7), 2009,
1177-1193.

7. A. De Lucia, V. Deufemia, C. Gravino, M. Risi, “Behavioral Pattern Identification through
Visual Language Parsing and Code Instrumentation”, in Proceedings of European
Conference on Software Maintenance and Reengineering (CSMR’09), 2009, pp. 99-108

8. J. Dong, D. S. Lad and Y. Zhao, “DP-Miner: Design Pattern Discovery Using Matrix”, in
Proceedings of IEEE International Conference on Engineering of Computer Based Systems
(ECBS’07), Tucson, Arizona, USA, 2007, pp. 371-380.

9. J. Dong and Y. Zhao, “Experiments on Design Pattern Discovery”, in Proceedings of
International Workshop on Predictor Models in Software Engineering (PROMISE’07),
2007.

10. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Menlo Park, CA, 1995.

11. E. Gamma, K. Beck, Contributing to Eclipse: Principles, Patterns, and Plugins, Addison-
Wesley, 2003.

12. G. C. Gannod, B. H. C. Cheng, “A framework for classifying and comparing software
reverse engineering and design recovery techniques”, in Proceedings of Working
Conference on Reverse Engineering (WCRE’99), 1999, p. 77–88.

13. Y. Guéhéneuc, G. Antoniol, “DeMIMA: A Multilayered Approach for Design Pattern
Identification”, IEEE Transactions on Software Engineering, 34(5), (2008), pp. 667-684.

51

14. D. Heuzeroth, S. Mandel, and W. Lowe, “Generating Design Pattern Detectors from Pattern
Specifications”, in Proceedings of the International Conference on Automated Software
Engineering (ASE’03), 2003, pp. 245–248.

15. D. Heuzeroth, T. Holl, W. Lowe, “Combining Static and Dynamic Analyses to Detect
Interaction Patterns”, in Proceedings of the International Conference on Integrated Design
and Process Technology (IDPT’02), 2002.

16. R. K. Keller, R. Schauer, S. Robitaille, P. Pagé, “Pattern-Based Reverse-Engineering of
Design Components”, in Proceedings of International Conference on Software
Engineering, Los Angeles, 1999, pp. 226-235.

17. C. Kramer, L. Prechelt, “Design recovery by automated search for structural design patterns
in object oriented software”, in Proceedings of Working Conference on Reverse
Engineering, IEEE CS Press, 1996, pp. 208-215.

18. J. Niere, W. Shafer, J. P. Wadsack, L. Wendehals, J. Walsh, “Towards Pattern design
recovery”, in Proceedings of International Conference on Software Engineering, Orlando
Florida, USA, 2002, pp. 338-348.

19. R. Olsson, N. Shi, “Reverse Engineering of Design Patterns from Java Source Code”, in
Proc. of IEEE/ACM International Conference on Automated Software Engineering
(ASE'06), 2006, pp. 123-134.

20. I. Philippow, D. Streitferdt, M. Riebish, S. Naumann, “An Approach for Reverse
Engineering of Design Patterns”, Journal of Software and System Modeling, 4(1), 2005, pp.
55-79.

21. F. Shull, W.L. Melo, V.R. Basili, “And inductive method for discovering design patterns
from object-oriented software systems”, Technical Report, University of Maryland,
Computer Science Department, College Park MD, 1996.

22. SourceNavigator, http://sourcenav.sourceforge.net/
23. N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. T. Halkidis, “Design Pattern Detection

using Similarity Scoring”, Transaction on Software Engineering, 32(11), 2006, pp. 896-
909.

52

An Eclipse Plug-in to Enhance the Navigation Structure
of Web Sites

Damiano Distante*, Michele Risi+, Giuseppe Scanniello†

* Faculty of Economics, Tel.M.A. University, Rome, Italy
+ Department of Mathematics and Computer Science, University of Salerno, Fisciano, Italy

† Department of Mathematics and Computer Science, University of Basilicata, Potenza, Italy
damiano.distante@unitelma.it, mrisi@unisa.it, giuseppe.scanniello@unibas.it;

Abstract. This paper presents a process and a tool developed as an Eclipse
plug-in for automatically enhancing the navigation structure of Web sites. The
process extends each page of a site with a Semantic Navigation Map, i.e., a set
of links connecting the page to other pages of the site showing similar or related
content. The process uses Latent Semantic Indexing to compute a dissimilarity
measure between the pages of the site, a graph theoretic clustering algorithm to
identify groups of pages with similar or semantically related content, and AJAX
code to extend each page with the corresponding Semantic Navigation Map.
Semantic navigation maps for a given Web site are recovered once and kept up
to date as new pages are added to the site or content of existing pages is
updated. Additionally to presenting the process, the underlying techniques and
the tool supporting the process, the paper also presents the results obtained from
a case study involving a real world Web site.

Keywords: Clone Detection, Latent Semantic Indexing, Software Maintenance,
Web Site Evolution, Web Site Navigation Structure, Eclipse plug-in.

1 Introduction

The success of a Web site depends in part on easy and quick access to the information
it provides, i.e. on its navigability. Navigability, indeed, is one of the critical factors
determining the usability of a Web site, i.e. the capability of the Web site to support
the effective, efficient and satisfactory accomplishment of user tasks [29], particularly
information gathering tasks.

The importance of navigation in Web sites1 is also demonstrated by the attention
devoted to this aspect by basically all most known Web engineering methods [5][18]
[25][26], which devote a specific design activity and a specific design model to define
the navigation structure of a Web site. A navigation model is usually based on two
modeling concepts: the concept of Node and the concept of Link. Nodes are defined
as self-contained uniquely identifiable units of information from/to which the user can
navigate in a Web site. Links are used to connect nodes and to enable navigation

1 Here and elsewhere in the paper, the term “Web site” can be generalized into that of “Web application”,

as our focus is on their navigation structure.

53

between them. Links between nodes are arranged to form particular access structures
such as guided tours or access by index.

However, due to time-to-market constraints, lack of proper skills, and/or poor
acceptability support [3][16], such Web engineering approaches, very often, are not
used in the industrial practice and little effort is devoted, in particular, to designing a
Web site prior to implementing it. Other times Web engineering approaches are only
used for developing and deploying the first version of the site and then neglected
during the rest of its life time, when new contents and/or functionalities are
introduced and original ones removed.

This paper presents an Eclipse plug-in to improve the navigability of a Web site.
This plug-in implements the approach previously presented in [24]. In particular, this
approach extends the navigation structure of a Web site with Semantic Navigation
Maps, i.e. with sets of links enabling navigation from each page of the site to other
pages showing similar or related content. The process uses Latent Semantic Indexing
(LSI) [10], a well known information retrieval technique, to compute a dissimilarity
measure between the pages of the site, a graph-theoretic clustering algorithm [14] to
identify clusters (groups) of pages showing similar or related content, and AJAX code
[6] to extend at run-time each page of the site with a semantic navigation map. In
order to automate the process of semantic navigation map recovery and injection and
to facilitate the adoption of the approach, we have developed a prototype of a
supporting tool as an Eclipse plug-in. The process and the tool have been applied with
success in a case study, also presented in this paper, that proved their validity and
usefulness.

The rest of the paper is organized as follows. Section 2 describes the process to
recover semantic relations among the contents of a Web site and to enhance its
navigation structure with semantic navigation maps. Section 3 describes the Eclipse
plug-in we developed to support the recovery and evolution process. Section 4 reports
the results of a case study while Section 5 discusses a number of works related to Web
sites evolution. Finally, Section 6 concludes the paper by providing some final remarks
and describing avenues for future work.

2 The Process

The process to extend the navigation structure of a Web site with semantic navigation
maps is schematically represented in Figure 1. In the following subsections we
describe in detail each of the phases and subphases of the defined process.

2.1 Recovering Semantic Navigation Maps

The phase RecoveringSemanticNavigationMaps is composed of three subphases:
ComputingDissimilarity, GroupingSimilarPages and RemovingPages.
ComputingDissimilarity extracts the textual content of each page (i.e., the text that is
presented to a user visiting the page) of the analyzed Web site and computes the
dissimilarity between any pairs of pages using a measure based on Latent Semantic
Indexing (LSI) [10]. A dissimilarity matrix is produced as output of this activity. This

54

matrix is used by the subphase of GroupingSimilarPages to identify groups of pages
with similar or related content. Pages included in single clusters, i.e., clusters
containing only one page, are discarded by the RemovingPages subphase and are not
considered in the following iterations of the process. The subphases
GroupingSimilarPages and RemovingPages are repeated until no single clusters
remain.

Figure 1. The overall process to evolve the navigation structure of a Web site by

recovering and introducing semantic navigation maps

ComputingDissimilarity starts with extracting the textual content (i.e., the static
text within the page body) of the client-side HTML pages of the given Web site; the
extracted content undergoes a normalization phase in which non-textual tokens (i.e.,
operators, special symbols, numbers, etc.) are eliminated, terms composed of two or
more words are split (e.g., “mail_address” is turned into “mail” and “address”), and
terms with a length less than three characters are discarded. A stemming algorithm is
also performed to reduce inflected (or sometimes derived) terms to their stem. Finally,
all the terms contained in a stop word list are removed.

The concept space of a Web site is built on its normalized content adopting LSI.
LSI is applied on a term-by-content matrix A, which is built on the normalized content
of the considered Web site. In particular, this matrix is m x n, where m is the overall
number of different terms appearing in the pages of the site and n is the number of
considered pages. An entry ai,j of the matrix A represents a measure of the weight of

RecoveringSemantic
NavigationMaps

:WebApplication

InjectingClientSideCode ComputingDissimilarity

:PageClusters

:Matrix

GroupingSimilarPages:Matrix

RemovingPages
[single clusters]

[else]

:ModifiedWebPages

DeployingNewWebSite

55

the i-th term in the j-th page. To derive the latent content semantics of a Web site we
apply on this matrix a Singular Value Decomposition (SVD) [10]. Using this
technique the matrix A (having rank r) can be decomposed in the product of three
matrices, T·S·DT, where S is an r x r diagonal matrix of singular values and T and D
have orthogonal columns. SVD also provides a simple strategy for optimal
approximate fit using smaller matrices and using only a subset of k concepts
corresponding to the largest singular values in S.

Terms and pages could be graphically represented by vectors in the k space of the
underlying concepts of a Web application. In our approach the rows of the reduced
matrices of singular vectors are taken as coordinates of points representing the pages
in a k dimensional space. To build the dissimilarity matrix of a web application we
first compute the cosine between all the pairs of vectors representing the pages in the
k dimensional space. Successively, the dissimilarity between the pairs of pages is
computed normalizing the cosine similarity measure from 0 (when the semantics is
the same) to 1 (when they have a different semantics).

GroupingSimilarPages uses a Graph-Theoretic clustering algorithm [14] to group
pages according to the defined dissimilarity measure. Generally, a Graph-Theoretic
clustering algorithm takes as input an undirected graph and then constructs a Minimal
Spanning Tree (MST). Clusters are identified pruning the edges of the MST with a
weight larger than a given threshold. Nodes within each tree of the obtained forest are
included in a cluster. The Graph-Theoretic clustering algorithm is used on the strongly
connected graph corresponding to the dissimilarity matrix computed in
ComputingDissimilarity. In this graph, each node corresponds to a page and the weight
associated to an edge represents the dissimilarity measure between the pair of pages
connected by the edge. Clusters of similar pages are identified using as pruning
threshold the arithmetic mean of the edge weights of the built MST. In case the
clustering algorithm identifies single clusters, the subphase RemovingPages is executed.
This subphase is in charge of removing from the dataset the pages that the used
algorithm includes in the single clusters. The so obtained dataset is then provided again
as input to GroupingSimilarPages. Note that the phases GroupingSimilarPages and
RemovingPages are iterated until no single clusters are identified or no clusters at all
remain. In the last extreme case, no semantic map is generated.

The phase of RecoveringSemanticNavigationMaps described in this section and its
subphases should be performed as new pages are added to the site, existing pages
removed or their content modified to keep semantic navigation maps consistent with the
actual content of the site.

2.2 Injecting AJAX Client-Side Code

The phase InjectingClientSideCode extends each page of the Web site with the AJAX
code able to (i) dynamically query the server that maintains the data on the recovered
clusters and (ii) display the semantic navigation map associated to a given page. In
particular, we use a Javascript function that interacts with a server component (a
servlet) to retrieve the list of pages within the cluster of the considered page and a
second function that uses the returned data to modify the HTML DOM of the page
and display the map of the retrieved navigation links.

56

It is worth noting that the pages of the Web site are modified once for all. The
injected AJAX code will dynamically query the server and recover the data on the
semantic navigation map to show for the given page, each time the page is loaded in a
browser.

2.3 Deploying the new Version of the Site

In the DeployingNewWebSite phase the enhanced version of the pages, the data on the
recovered clusters of similar pages and the servlet component able to query these data
are deployed on the server. In particular, the servlet needs to be deployed only once.

3 The Eclipse plug-in

We have developed a tool as an Eclipse plug-in that fully supports all the phases of
the process depicted in Figure 1.

Figure 2. Semantic Navigation Map Menu

As a first operation, the plug-in requires to create an Eclipse project. To this end,
the plug-in proposes a wizard which allows specifying the name of the project and its
workspace. Once the project has been created, the analyst has to select the Web site
whose navigation structure will be enhanced according to the proposed approach.
This is possible by right-clicking the project within the Package Explorer view and

57

choosing Select Source Directory within the menu Semantic Navigation Map (see
Figure 2).

At this point the plug-in will provide a window for choosing the path of the folder
where the pages of the original Web site are stored. Note that these pages have to be
stored on the local file system of the computer where the plug-in is installed, but
future versions of the plug-in will also work on Web pages maintained on remote
servers.

Figure 3. Improving Groups of Similar Pages

The clustering process is started by right-clicking the project and choosing
Clustering Pages within the menu Semantic Navigation Map (see Figure 2). The
plug–in will produce a file (i.e., dbcluster.txt) containing all the automatically
identified clusters. Indeed, this file contains all the pairs of pages (actually, their paths
and names) composing each cluster, and their similarity level (i.e., the cosine between
the vectors of the pages in the content space). To improve the overall quality of the
clustering process, the plug-in also provides for manually refining the automatically
identified clusters. Indeed, if needed, the analyst can refine a cluster by modifying the
set of included pages and their similarity levels. Figure 3 shows how the clustering
results can be refined with the plug-in.

After the clustering process is complete, the analyst can use the plug-in to extend
the pages of the Web site by automatically introducing the client side AJAX code that
enables the visualization of the semantic navigation maps. Afterwards, the new pages
and the Javascript library will be automatically added to the project workspace.
Finally, the plug-in enables the deployment of the enhanced Web site on a suitable
Web server. Note that the enhancement of the Web pages with the client side AJAX
code could be also performed before performing the clustering process.

58

4 The Case Study

The approach and the plug-in have been assessed on several real-world Web sites. In
the following subsections we present and discuss the results obtained from the
National Gallery of London Web site (NGL)2.

4.1 Experimental Context

To conduct the case study, we first dumped the pages of the selected Web site using
the freeware dumper HTTrack Website Copier3. In the case of NGL, the dump was
executed on June 9th, 2008. In particular, HTTrack Website Copier downloaded 6573
HTML pages using the index page as starting page and following the hyperlinks
connecting the pages until the sixth level of depth was reached in the folder hierarchy
of the Web site. The mirror of NGL has been successively analyzed to prune
duplicated HTML pages created by the dumper and documents currently not
considered by the current approach (e.g., PDF and Word files) and multimedia objects
(e.g., JPG images and flash animations). Regarding the HTML pages, we limited the
analysis to the section of the site named Collection, i.e. the section devoted to the
museum entire permanent collection and long term loans. We also considered the
pages presenting the works of art shown during the years in the gallery (i.e., the pages
within the Exhibition section). The total number of HTML pages we have selected
and considered in the presented case study is 2017.

4.2 Results

The clustering process grouped the 2017 pages of NGL into 243 different clusters.
The largest cluster contained 32 pages and included pages from the collection
Scientific Instruments and Inventions from the Past of the gallery. On the other hand,
the mean number of pages within the clusters was 2.6. These and other descriptive
statistics on the case study are summarized in Table 1.

Table 1. Descriptive statistics for the analyzed Web site.
 NGL
Number of analyzed pages 2017
Number of identified clusters 243
Number of iterations 5
Number of pages within single clusters 1387
Number of pages within clusters containing at least two pages 630
Number of pages within the largest cluster 32
Mean number of pages within the clusters 2.6
Number of characters within the analyzed pages 3.460K

2 www.nationalgallery.org.uk
3 Available at www.httrack.com

59

The plug-in has been also used to inject the AJAX code required to dynamically
show into each of the analyzed pages the set of links connecting it with the other
pages in the same cluster, i.e., the associated semantic navigation map. An example of
the resulting pages is shown in Figure 4.

This page differs from its original version for the presence of the semantic
navigation map shown on the right hand side. The semantic navigation map presents a
set of links towards pages that have been found similar to it. Each link shows: (i) the
title of the target page; (ii) the percentage of similarity with the current page obtained
using LSI; (iii) a description of the target page obtained from data in its description
meta tag.

4.3 Discussion

By analyzing the pages presenting information on the permanent collection and long
term loans of the museum (i.e., the Collection section of the NGL Web site), we noted
the presence of a navigation menu on the bottom right hand side. In particular, given
an artist and his/her work of art, the menu enables users to directly access the pages
presenting the other works of art by the same artist.

Figure 4. The enhanced version of a page

We observed that most of the links presented within the menu were also proposed
by analogous links in the semantic navigation map that were automatically identified
by the tool. In some other cases, we also noted that some pages of the Collection
section presented a navigation menu with a number of links larger than the ones
proposed by the semantic navigation maps. However, in most cases, the semantic
navigation maps presented the same links as the corresponding navigational menu.
This indicates that the links of the identified semantic navigation maps are generally
correct.

60

It could be objected the fact that the recovered semantic navigation maps may result
in duplicate navigation structures. This was true just in this particular Web site, were a
navigation menu similar to our recovered semantic navigation maps was available, but
in general this is not the case. Moreover, the purpose of the conducted case study was to
assess the correctness of the produced navigation maps, a goal we can state the case
study reached. Hence, we could expect that the plug-in will provide correct semantic
navigation maps also for Web sites where such semantic navigation structures are not
available.

5 Related Work

In the past, the problem of defining methods and tools to support software engineers
in maintaining and evolving Web applications have extensively studied [1][4][7][12]
[13][21][22]. For example, Ricca and Tonella [21] propose ReWeb, a tool for
analyzing the structure and the evolution of static Web sites. They define a conceptual
model for representing the structure of a Web site and several structural analyses
relying on such model, including flow analysis, graph traversal algorithms and pattern
matching. In [1], Antoniol et al. propose a methodology for reengineering a static
Web site. The recovered design is based on the Relationship Management Data Model
(RMDM) and the ER+ Model proposed within the Relationship Management
Methodology (RMM) [17]. The reverse engineering phase consists of abstracting the
navigational structure of the Web site and identifying the entities of the application
domain and the relationship among them. The forward engineering phase is then
performed by following the RMM methodology on the restructured version of the
recovered ER+ diagram.

Bernardi et al. have recently proposed REUWA [2], an approach and a supporting
tool to recover user-centered conceptual models from existing Web applications,
according to the UWA methodology [30]. The approach recovers a model of the
application contents, their semantic associations and access structures, and delivers it
as an instance of the UWA MOF metamodel, which can be afterward used in a
forward model-driven engineering process based on UWAT+.

Other authors have proposed approaches for the model-based evolution of Web
applications. Garrido et al. in [15] introduce Web Model Refactoring as behavior
preserving transformations for the navigation and presentation models of a Web
application, aimed at improving its design and external quality. An approach to
redesign business processes in Web applications is proposed in [27] by Tilley et al.,
while Lowe and Kong in [20] propose NavOptim, an approach to redesign the
navigation structure of a Web site.

Different authors have used clustering algorithms to identify similar Web pages. In
[22] Ricca and Tonella enhance the approach based on the Levenshtein edit distance
proposed by Di Lucca et al. in [11] (a pairs of pages is a clone if the Levenshtein edit
distance [19] between the strings encoding the page structures is zero) using a
hierarchical clustering algorithm to identify clusters of duplicated or similar pages to
be generalized into a dynamic page. Differently from the approach proposed in [11],
the distance of cloned pages belonging to the same cluster is not zero. Similarly, in

61

the [28] authors propose a semiautomatic approach based on an agglomerative
hierarchical clustering algorithm to identify and align static HTML pages whose
structure is the same and whose content is in different languages. The aligned
multilingual pages are then merged into MLHTML pages. De Lucia et al. [9] also
propose a semiautomatic approach based on the Levenshtein edit distance to compute
the similarity of two pages at the structural, content, and scripting code levels. Clones
are characterized by a similarity threshold that ranges from 0%, for different pages, up
to 100%, for identical pages. An approach based on a general process that first
compares pages at the structural level (i.e., the Levenshtein edit distance) and then
groups them using a competitive clustering algorithm (i.e., Winner Takes All) is
proposed by De Lucia et al. in [7].

Ricca et al. in [23] describe the results of an empirical study to group pages in Web
site according to their content. Clustering is based on the similarity of the keywords
within the page content. Keywords are weighted so that more specific keywords
receive a higher score. The authors use the Natural Language Processing techniques
to weight each keyword, according to its relevance and specificity. Similar pages are
then grouped together by adopting a hierarchical clustering algorithm.

In [8] a comparison among clustering algorithms to identify similar pages at the
content level is presented. In this work, three variants of the agglomerative clustering
algorithm, i.e., a divisive clustering algorithm, k-means, and a competitive clustering
algorithm, have been considered. The study reveals that the investigated clustering
algorithms generally produce comparable results. To compare pages, an LSI based
similarity measure is used.

6 Conclusion and Future Work

Our research is meant to automatically recover semantic relations between the pages
of a Web site and build semantic navigation maps, accordingly. To this aim, we have
defined a process that uses Latent Semantic Indexing (LSI) to compute a dissimilarity
measure between the pages of a site, and a Graph-Theoretic clustering algorithm to
group pages showing similar or related content, based on the computed dissimilarity
measure. Finally, we use AJAX code to enhance the navigation structure of the Web
site with a set of hyperlinks connecting each page to other pages within the same
cluster. We defined this set of links as Semantic Navigation Map.

To automate the application of the approach, we have developed a supporting tool
as an Eclipse plug-in. Both the approach and the tool have been validated in a case
study.

Semantic navigation maps may be particularly useful when the navigation structure
of the site is found to be not properly designed or when it has degraded during the
Web site life-cycle. However, even properly designed Web sites may benefit from the
use of the semantic navigation maps. In fact, they represent an additional navigation
structure, complementary to those implementing the navigation model obtained
during the design phase, and offering navigation paths based on content semantics and
similarity.

62

In the future, we plan to apply the approach on other Web sites of different size
and application domain. A further experimentation will be conducted to evaluate the
completeness and correctness of the clusters of pages identified as similar at the
semantic level by the tool prototype.

It will be also worth extending both the approach and the tool to make them
suitable for dynamic Web sites, i.e., Web sites for which the content showed into
pages and the accessible pages varies depending on some context variable (the user
profile, location, etc.). In this direction, we are currently working on developing
software components to be integrated in different and widely employed Web
applications, e.g., CMSs, e-learning platforms, and e-commerce application
frameworks.

Finally, with the intent of satisfying the user’s expectation and requirements, we
will also investigate the possibility of adapting the navigation maps considering the
user profile.

References

1. G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. “Web Site Reengineering using
RMM”. In Proc. of the 2nd International Workshop on Web Site Evolution, Zurich,
Switzerland, 2000, pp. 9-16.

2. M. Bernardi, G. A. Di Lucca, and D. Distante, “Reverse Engineering of Web Applications
to Abstract User-Centered Conceptual Models”. In Proc. of the 10th International
Symposium on Web Site Evolution, IEEE CS Press, 2008, pp. 55-64.

3. C. Boldyreff and P. Tonella. “Web Site Evolution”. Special Issue of the Journal of
Software Maintenance, vol. 16, no 1-2, 2004, pp. 1-4.

4. C. Boldyreff and R. Kewish. “Reverse Engineering to Achieve Maintainable WWW Sites”.
In Proc. of the 8th IEEE Working Conference on Reverse Engineering, Suttgart, Germany,
IEEE CS Press, 2001, pp. 249-257.

5. S. Ceri, P. Fraternali, and A. Bongio. “Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites”. Computer Networks 33 (1-6), 2000, pp. 137-157.

6. D. Cran, E. Pascarello and J. Darren. “Ajax in Action” Manning Publications Co. October,
2005. ISBN: 1932394613

7. A. De Lucia, G. Scanniello, and G. Tortora “Identifying Similar Pages in Web Applications
using a Competitive Clustering Algorithm”. In Journal on Software Maintenance and
Evolution, vol. 19, no. 5, September-October 2007, Wiley, pp. 281-296.

8. A. De Lucia, M. Risi, G. Scanniello, and G. Tortora “Clustering Algorithms and Latent
Semantic Indexing to Identify Similar Pages in Web Applications”. In Proc. of the 9th IEEE
International Symposium on Web Site Evolution, Paris, France, October 5-6, 2007, IEEE
CS Press, pp. 65-72.

9. A. De Lucia, R. Francese, G. Scanniello, and G. Tortora. “Identifying Cloned Navigational
Patterns in Web Applications”. In Journal of Web Engineering, vol. 5, no.2, Rinton Press,
2006, pp. 150-174.

10. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. “Indexing
by Latent Semantic Analysis”. In Journal of the American Society for Information Science,
no. 41, 1990, pp. 391-407.

11. G. A. Di Lucca, M. Di Penta, and A. R. Fasolino. “An Approach to Identify Duplicated
Web Pages”. In Proc. of the 26th Annual International Computer Software and Application
Conference, Oxford, UK, IEEE CS Press, 2002, pp. 481-486.

63

12. G. A. Di Lucca, M. Di Penta, G. Antoniol, and G. Casazza. “An Approach for Reverse
Engineering of Web-based applications”. In Proc. of the 8th IEEE Working Conference on
Reverse Engineering, Suttgart, Germany, IEEE CS Press, 2001, pp. 231-240.

13. D. Eichmann “Evolving an Engineered Web”. In Proc. of International Workshop Web Site
Evolution, Atlanta, GA, 1999, pp. 12-16.

14. P.J. Flynn, A. K. Jain, and M. N. Murty “Data Clustering: A Review”. In ACM Computing
Surveys, vol. 31, no. 3, 1999, pp. 264-323.

15. A. Garrido, G. Rossi, and D. Distante, “Model Refactoring in Web Applications”. In Proc.
of the 9th International Symposium on Web Site Evolution, IEEE CS Press, 2007, pp. 89-96.

16. F. Garzotto and V. Perrone. “On the Acceptability of Conceptual Design Models for Web
Applications”. In Proc. of Conceptual Modeling for Novel Application Domains – ER’03
Workshops. Chicago, US, October 2003, LNCS – 2814/ 2003, pp. 92-104.

17. T. Isakowitz, E. A. Stohr, and P. Balasubramanian, “RMM: a Methodology for Structured
Hypermedia Design”, Communications of the ACM, vol. 38, no. 8, 1995, pp. 34–44.

18. G. Kappel, B. Pröll, S. Reich, W. Retschitzegger (Eds.), “Web Engineering: The Discipline
of Systematic Development of Web Applications”, Wiley, 2006.

19. V. L. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals”.
Cybernetics and Control Theory, vol. 10, 1966, pp. 707-710.

20. D. Lowe and X. Kong, “NavOptim Coding: Supporting Website Navigation Optimisation
using Effort Minimisation”. In Proc. of 2004 IEEE/WIC/ACM International Conference on
Web Intelligence, Beijing, China, 2004, IEEE CS Press, pp. 91-97.

21. F. Ricca and P. Tonella, “Understanding and Restructuring Web Sites with ReWeb”, IEEE
Multimedia, vol. 8, no. 2, 2001, pp. 40-51.

22. F. Ricca and P. Tonella, “Using Clustering to Support the Migration from Static to
Dynamic Web Pages”. In Proc. of International Workshop on Program Comprehension,
Portland, Oregon, USA, 2003, pp. 207-216.

23. F. Ricca, P. Tonella, C. Girardi, and E. Pianta, “Improving Web site understanding with
keyword-based clustering”. In Journal of Software Maintenance and Evolution: Research
and Practice, vol. 20, n. 1, 2008, pp. 1-29.

24. G.Scanniello, D. Distante, M. Risi, “Using Semantic Clustering To Enhance the Navigation
Structure of Web Sites”. In Proc. of the 10th International Symposium on Web Site
Evolution, IEEE CS Press, 2008, pp. 55-64.

25. D. Schwabe and G. Rossi, “An object-oriented approach to Web-based application design”.
Theory and Practice of Object Systems (TAPOS). Special Issue on the Internet, vol. 4, no.
4, October, 1998, pp. 207-225.

26. W. Schwinger and N. Koch, “Modeling Web Applications”, In “Web Engineering”,
Chapter 3. G. Kappel, B. Pröll, S. Reich, W. Retschitzegger (Eds.). Wiley, 2006.

27. S. Tilley, D. Distante, and S. Huang. “Web Site Evolution via Transaction Reengineering”.
In Proc. of the 6th IEEE International International Symposium on Web Site Evolution,
IEEE CS Press, 2004, pp. 31-40.

28. P. Tonella, F. Ricca, E. Pianta, and C. Girardi, “Restructuring Multilingual Web Sites”. In
Proc. of the 18th International Conference on Software Maintenance, Montreal, Canada,
IEEE CS Press, 2002, pp. 290-299.

29. G. Tsakonas, C. Papatheodorou, “Exploring usefulness and usability in the evaluation of
open access digital libraries”. In Proc. of International Journal of Information Processing
and Management, vol. 44 (3), May 2008, Pergamon Press Inc, pp. 1234-1250..

30. UWA Consortium, “Ubiquitous Web Applications”. In Proc. of the eBusiness and eWork
Conference 2002, Prague, Czech Republic, October 2002.

64

An Empirical Evaluation of the Eclipse Framework

Mariarosaria Lapolla1, Michele Risi2, Giuseppe Scanniello1

1 Department of Mathematics and Computer Science, University of Basilicata, Potenza, Italy
2 Department of Mathematics and Computer Science, University of Salerno, Fisciano, Italy

mariarosaria.lapolla@tiscali.it, mrisi@unisa.it, giuseppe.scanniello@unibas.it;

Abstract. This paper presents a preliminary investigation, based on the
combined use of two techniques: a questionnaire-based survey and an
empirical analysis, to assess the effectiveness and efficacy of the Eclipse
framework to support novice developers in the development and maintenance
of Java source code. The satisfaction of the developers has been investigated
as well. The context of this study was constituted of Bachelor students in
Computer Science at the University of Basilicata. The survey shows a good
satisfaction degree of all the involved subjects, while the empirical analysis
reveals that the effectiveness and the efficacy of the Eclipse framework can be
considered appropriate.

Keywords: Empirical Study, Software Maintenance.

1 Introduction

The academic and industrial realities are proposing several software tools to support
software engineers and developers during the development and maintenance. The
adoption of these tools could not be made without a systematic and quantitative
evaluation, in particular concerning the usability. In fact, if a tool is difficult to use, it
will hardly be adopted, no matter how useful it may be. Although this is a critical
point that is widely recognized and has been extensively discussed in the past, very
few studies have been conducted for evaluating these tools.

The usability cannot be related to a precise aspect of a software system, but it
strongly depends on the intended use of the system. According to the standard ISO
9241-11 [4], usability represents the degree of a software product to be used by
specific users to pursue specific goals within a specific usage context effectively,
efficiently, and with satisfaction. So far, few investigations have been carried out to
assess these concerns in Integrated Development Environments (IDEs) both
commercial and open source.

Usability methods have been developed for many years to evaluate the efficiency,
interaction flexibility, interaction robustness, and quality of user interfaces [2][7][8].
Several usability evaluation techniques and guidelines are proposed in the literature
aiming at planning and realize usability studies [6][11][13]. For example, Ricks and
Arnoldy [11] assert that all the usability studies follow the same basic steps although

65

a wide variation of products can be analysed (e.g. software applications, printers, web
sites, etc…). Generally, usability produces several benefits [7][13] ranging from the
reduction of the training costs to the improvement of the user satisfaction. In
particular, usability is often the major concern in the adoption of software tools in
industry. Usability cannot be generally related to a precise aspect of a software
system, but this concept varies depending on the intended use of the system. Hence, it
is easy to understand that the evaluation of IDEs is generally very hard since they
provide a huge number of functionalities and their user interface is very complex as
they are intended for users with specific competences.

Usability methods can be broadly divided in two groups: expert evaluation and
user studies. Expert evaluation includes cognitive walkthrough, model-based
evaluation, and heuristic evaluation and can be used since the initial phases of the
software development process. On the other hand, user studies are based on the direct
involvement of users through observations, interviews, and questionnaires and include
empirical methods and observational methods. These techniques are quite efficient for
evaluating usability of user interface when concrete tasks are considered.

This paper presents a preliminary user study to assess the effectiveness and
efficacy of the version 3.4.1 of the Eclipse framework to support novice programmers
in the development and maintenance of Java source code. The satisfaction of the
programmers has been also investigated here. The presented study is based on the
combined use of two techniques: a questionnaire-based survey and an empirical
analysis. The context of user study was constituted of Bachelor students in Computer
Science at the University of Basilicata. The survey shows a good satisfaction degree
of all the involved subjects, while the empirical analysis reveals that the Eclipse
effectiveness and efficacy is appropriate.

The remainder of the paper is organized as follows: Section 2 shows the design of
the presented user study. Section 3 discusses the observed results and Section 4
concludes the paper.

2 The design of the usability study

In this section we present the design of the empirical study presented here. In
particular, we describe the data set and then the techniques we have adopted to assess
the efficacy, efficiency of the tool and the users’ satisfaction.

2.1 The data set

The study was conducted in a research laboratory at the University of Basilicata. Data
for the study have been gathered considering a group of eleven volunteers. They were
Bachelor students in Computer Science at the University of Basilicata. All the
involved subjects had object-oriented programming experience and good knowledge
of IDEs both commercial and open source. In particular, all the subjects passed the
following programming exams: procedural and object oriented. On the other hand, the
majority of them passed the advanced course of object oriented programming
language. Table 1 summarizes the subjects’ background. In particular, it presents for

66

each subject the known programming languages and IDEs. Note that all the subjects
master Netbeans, while only one subject has a very good experience on the Eclipse
framework. This was due to the fact that Netbeans was the IDE the subjects used
within the procedural and object oriented programming courses. This can be
considered interesting as it reproduce a possible scenario where a small software
industry is intended to replace the used IDE (i.e., Netbeans) in favor a new one (i.e.,
Eclipse). A careful reader may object the fact that the use of Bachelor students as
subjects may affect the soundness of this scenario. Nevertheless, the business of a
small software house, especially in the south of Italy, is based on programmers with a
Bachelor degree in computer science, thus considering the subjects of this study not
far from junior programmers.

Table 1. Subjects’ Background.

ID Programming Languages IDEs
1 Java, C#, C, C++, Fortran, Pascal, PHP NetBeans, Visual Studio, #Develop, Eclipse
2 Java, C#, C Netbeans, Visual Studio
3 C++, C#, Java, Fortran Netbeans
4 Java, C++, C# Netbeans, Visual Studio
5 Java, C#, Fortran, Pascal, C Netbeans, Visual Studio, Visual C#
6 Java, C# Netbeans
7 Java, C#, C++ Netbeans
8 Java, C#, C, C++ Netbeans
9 Java, C#, C++, Fortran Netbeans
10 C#, C++, Fortran Netbeans
11 C++, Fortran, C, Java, C# Netbeans, Visual Studio, Visual Web

The study has been divided in four steps and performed in one-to-one session (i.e.

a supervisor for each subject) using the think aloud technique. In the first step all the
subjects have been introduced the Eclipse framework and its main functionalities.
Successively, they have been asked to use the tool for 10 minutes without invoking
any kind of tutor support. The subjects were asked to perform two tasks in the third
step. The first task concerned the creation of a Java project and the implementation of
some classes using the Eclipse features (e.g., the automatic generation of the getter
and setter methods for each field). They were also asked to organize the implemented
classes in packages. The second task regards the execution of maintenance operations
on existing Java code. In particular, the subjects were asked to correct syntactic and
semantic errors within a Java software system created by one of the author. This
software was in charge of managing a gym and its customers. To avoid that the
subjects exchange information on the errors within the considered software, we have
developed a different task for each subject. The complexity to the tasks was however
comparable as the number of errors was the same (i.e., 5) and the needed effort to
correct them was nearly the same. In the fourth step, the subjects have filled in a post
experiment survey questionnaire to achieve information on their satisfaction. Details
on the questionnaire will be provided in the following.

67

During the experiment the supervisor did not provided any help to the subjects to
avoid biasing the experiment. He only wrote the comments and problems of the
subjects, when they spoke aloud. For each subject the needed time to accomplish the
experiment was annotated as well.

It is worth mentioning that the tasks had to be carried out respecting some
constraints. In particular, for the first task the subjects were asked to save the projects
using their surname in the directory ‘workspace’. They had to use the Eclipse features
to create both the main method of their application and the methods get and set of
each created field.

2.2 Design of the survey

Surveys can be used to collect information on the preferences and reactions of some
selected subjects. This technique is particularly valuable for usability investigations
since it allows designers to understand the user reaction and to identify possible
problems. Typically, questionnaires are used to capture the user point of view in order
to assess aspects of usability, validity and/or reliability of user interfaces [1].
Questions should be ordered in such a way that each question does not influence the
response to subsequent questions and they should be presented in the same order to
the subjects.

The questionnaire we used in this study contained 37 questions arranged in four
categories: subject experience, Eclipse satisfaction, first task, and second task. In
particular, it contained both open (required just filling in a comment or text) and
closed questions. To collect information on the subjects’ programming experience and
on the known programming languages and IDEs we have defined the first part of the
survey questionnaire. Special emphasis has been posed to Eclipse. The questions of
this category (i.e., subject experience) are shown in Table 2.

Table 2. Subject experience.

ID Questions
q1 Have you never used Eclipse framework? (yes- not)

q2
In case you answered yes to q1, how do you judge your knowledge?
(scant – sufficient – good - very good)

q3 Which IDEs have you used in the past?

q4
How do you judge your knowledge about these IDEs? Indicates for each of
them the knowledge level (i.e., scant, sufficient, good, or very good)

q5 Among the known IDEs what is the simpler to use?
q6 Which programming languages do know you?

q7
How do you judge your programming experience?
(scant – sufficient – good - very good)

q8
Do you have professional programming experience?
(yes-not)

68

To get information about the subjects’ satisfaction on the Eclipse usage (i.e.,
Eclipse satisfaction category) the questions of Table 3 have been defined. On the
other hand, the questions regarding the first and second tasks are reported in Table 4
and Errore. L'origine riferimento non è stata trovata., respectively. All the
questions reported in the tables from 3 to 5, except q22, expected closed answers
according to a five point Likert scale [9] (from always to never). The question q22 is
open and requires that the subjects provide their satisfaction on the usage of the
analyzed version of the Eclipse framework.

Table 3. Eclipse Satisfaction.

ID Questions
q9 Did you have any problem to use the Eclipse functionality?
q10 Did you have any problem using Eclipse?
q11 The time to learn a functionality of the Eclipse framework is appropriate.
q12 The user interface is pleasant and easy to understand.
q13 Did you have any problems to find the needed functionality
q14 Did you use the Eclipse help?
q15 The help provides a suitable support.
q16 The used Eclipse functionality is easy to master.
q17 Eclipse provides a suitable support to the programmer.
q18 The Eclipse tool bar is easy to understand.
q19 Did you need any external help during the experimentation?
q20 Eclipse promptly reacts to each required command/functionality.
q21 I have planned to use Eclipse in the future.

q22
Provide your personal observations about the used version of the Eclipse
framework.

Table 4. First task.

ID Questions

q23 Did you have any problems in importing external packages within the
implemented program?

q24 The number of operation to accomplish the tasks was appropriated.
q25 The creation of the get and set methods was simple.
q26 The effort to create the signatures of the methods (e.g., main) is appropriate.
q27 The suggestions on the errors highlighted in red were easy to understand.
q28 Did you understand the he messages provided by Eclipse?
q29 Automatic code completion is useful.

69

Table 5. Second task

ID Questions
q30 It was difficult to understand the software.
q31 Did you solve all the identified syntactic errors?
q32 Did you solve all the identified semantic errors?

q33 The suggestions provided by the Eclipse framework were useful to identify and
correct the syntactic and semantic errors.

q34 Did you remove all the syntactic and semantic errors, thus enabling the system
run?

q35 The classes were properly named.
q36 The project was properly structured.
q37 The behavior of the classes is clear.

2.3 Design of the empirical analysis

In this study we have considered the variables reported in Table 6. The first and the
second column contain the name of the variables and their description, respectively.
The type of the variable is reported in the third column. The variable MN1 denotes
the effort, expressed in terms of minutes, to carry out the first task, while MN2
denotes the effort to carry out the second task.

Table 6. Selected variables.

Variable Description Scale

MN1 Number of minutes required to perform
the first task. Ratio

MN2 Number of minutes required to perform
the second task. Ratio

LOC1 LOCs coded by the subject within the
first tasks. Ratio

ER2 Number of not discovered errors within
the second tasks Ratio

In order to graphically represent the distribution of the size measures of the
considered usability study, we have adopted the boxplots. They are widely employed
in exploratory data analysis since they provide a quick visual representation to
summarize the data using: the median, upper and lower quartiles, minimum and
maximum values, and outliers. Note that we also used this kind of representation to
summarize the answers of the survey questionnaire.

70

3 Results

In this section, we present the results of the post experiment survey questionnaire and
draw some conclusions with respect to the empirical analysis.

3.1 Survey results

The answers of the subjects are summarized in Table 7. According to the defined
categories (i.e., Eclipse satisfaction, first task, and second task) the answers are also
visually summarized in Figure 1. The values on the x axes range from 1 (always) to 5
(never). The boxes show that the answers are generally concordant on each question.
However, some consideration are due on some questions of the survey.

Table 7. Survey questionnaire results.

Questions always often neutral some time Never
q9 1 3 6 1 0

q10 0 3 5 2 1
q11 0 1 4 4 2
q12 0 5 3 3 0
q13 0 5 3 3 0
q14 0 0 0 1 10
q15 0 0 0 1 0
q16 2 5 4 0 0
q17 0 1 4 4 2
q18 2 5 3 1 0
q19 0 1 5 3 2
q20 2 6 2 1 0
q21 0 2 4 1 4
q23 5 2 4 0 0
q24 5 4 2 0 0
q25 7 3 0 1 0
q26 9 0 0 1 1
q27 3 6 2 0 0
q28 4 2 4 1 0
q29 4 4 3 0 0
q30 4 4 3 0 0
q31 6 4 1 0 0
q32 5 2 3 0 1
q33 3 3 5 0 0
q34 7 4 0 0 0
q35 7 4 0 0 0
q36 6 4 1 0 0
q37 7 4 0 0 0

71

(Eclipse satisfaction)

(first task) (second task)

Figure 1. Boxplots of the questionnaire answers.

The majority of the subjects did not have any problem, while using Eclipse and its

functionality. The subjects did not found the Eclipse user interface pleasant. However,
they stated that the Eclipse user interface effectively supported them in finding and
properly using unknown functionality, even without using the help.

Regarding the subjects’ satisfaction in writing new source code (i.e., the first tasks)
the results is generally concordant. In particular, the subjects expressed a very good
judgment on the Eclipse framework. The only problem that they found concerned the
import of an external package. This could be due to the fact that the steps to perform
were different with respect to Netbeans. This is another issue that deserves a further
future investigation (see Conclusion section).

A good satisfaction degree was manifested by all the subjects on the maintenance
task. This task was also considered clear. In general, the answers of the subjects were
concordant.

72

3.2 Empirical analysis results

The time that the subjects spent to accomplish both the defined tasks are reported in
Table 8, while Table 9 shows descriptive statistics (i.e., variance, standard deviation,
mode, min, max, and mean) of the considered variables. The times to perform the two
tasks are also visually summarized by the boxplots in Figure 2. In particular, Figure
2(a) does not present outliers. Although the box is skewed, a good distribution of the
time to accomplish the first task is shown. An outlier is shown in Figure 2(b). Also in
this case the distribution of the time can be considered good.

The best and the worst time to accomplish the first task were 10 and 30 minutes,
respectively. On the other hand, 5 minutes was the best time to perform the second
task, while the worst time was 25 minutes. The mean time to accomplish the first task
was 17.27, while 10 is the mean time to accomplish the second task. As expected, the
time to accomplish the first task presents more variability with respect to the time to
accomplish the second tasks. This confirms the fact that the complexity of the second
task was nearly the same for each subject involved in the user study.

Table 8. Row data.

Subject MN1 MN2 LOC1 ER2
1 10 5 37 0
2 10 10 33 1
3 25 10 37 1
4 15 5 47 1
5 30 25 33 1
6 30 10 64 1
7 10 5 36 1
8 15 10 40 1
9 15 10 13 1

10 20 10 31 1
11 10 10 29 1

Table 9. Descriptive statistics.

Variable Variance Standard Deviation Mode Min Max Mean
MN1 61.82 7.86 10 10 30 17.27
MN2 30 5.47 10 5 25 10
LOC1 154.25 12.41 37 13 64 36.36
ER2 0.09 0.30 1 0 1 0.90

73

(first task)(a) (second task)(b)

Figure 2. Boxplots of MN1 and MN2.

The programs the subjects developed within the first task can be considered

comparable in terms of complexity and size (see Table 9). In fact, the majority of the
subjects coded simple programs to execute arithmetic operations and to show on the
video the results.

The supervisor noted that the majority of the subjects made nearly the same
mistakes, while performing the first task. In particular, these mistakes concerned the
use of keyboard shortcut (not provided by Eclipse) that the subjects widely employed
within Netbeans. The habit of software developers is an interesting point that requires
a further empirical investigation.

Regarding the maintenance operations to perform in the second task, we can note
that all the subjects were able to remove the majority of the errors (i.e., 4 mistakes of
5) both syntactic and semantic present in the understudy software system (see Table
9). Indeed, all the subjects except one, who identified all the errors, were not able to
discover the same type of semantic error (i.e., a bug within an iterative cycle to scan a
list). It is worth noting that all the syntactic errors were discovered by the subjects,
thus indicating that the Eclipse framework effectively supports the developers in this
phase. A further study is however needed to confirm or contradict this result.

3.3. Discussion

The general judgment of the Eclipse framework has been considered appropriate both
to write source code and to comprehend and modify an existing one. Despite this
encouraging result a further consideration is due. In particular, the subjects’
satisfaction and performances have been probably influenced by the fact that they
were very familiar with Netbeans and were not very familiar with the Eclipse
framework. This concern is very interesting from the technology transfer point of
view [10][12].

The subjects manifested the will of adopting Eclipse in the future (see box q21 in
Figure 1) as it is easy to use and to learn. The fact of having an active community of
developers was identified as a strength point to adopt it. Some issues have been

74

however aroused by the subjects on the graphical user interface of Eclipse, in general,
and its perspectives, in particular. Once again, this could be due to the fact that the
subjects unintentionally performing a comparison between the IDE they better known,
i.e., Netbeans, with the Eclipse framework.

3.4 Threats to validity

The threats to validity that could affect both study (i.e. internal, construct, and
external validity threats) are described in the following. The internal validity threats
are relevant for our study as we aimed at concluding that Eclipse effectively supports
novice developers. The internal validity threats are mitigated by the experiment
design. The surveys also revealed that the subjects found clear everything regarding
the tasks. This threat was also mitigated as the subjects knew neither the objective of
the experiment nor its hypotheses.

The construct validity threats could be present in this study. However, the
measurement of the variable was performed considering the times gathered by the
supervisor. Finally, the survey questionnaire was designed using standard ways and
scales [9].

External validity refers to the approximate truth of conclusions involving
generalizations. This kind of threat is always present when students are used as
subjects [3]. Nevertheless, before conducting the study, we identified the population
we would like to investigate the Eclipse usage (i.e., novice software developer with
some knowledge in a different IDE), and then we drew a fair sample from that
population and conducted the study with subjects belonging to this sample. Moreover,
none of the subjects abandoned the study. To confirm or contradict the achieved
results replications using a larger dataset will be conducted. In the future we also plan
to conduct a further investigation to compare the effectiveness and efficacy of Eclipse
with respect to other widely used IDEs, e.g., Netbeans or Visual Studio.

It is worth noting that conclusion validity threats are not present in this study as
statistical tests have not been performed to reject null hypotheses.

4 Conclusion

Software houses are generally conservative. They only act when they are forced to
[12]. Such a position makes the adoption of a new technology quite challenging. This
preliminary user study aims at providing some outcomes to increase the body of
knowledge about the risks and benefit of introducing the Eclipse framework within
the software industry. This was the main motivation for conducting our user study,
based on the combined use of two techniques: a questionnaire-based survey and an
empirical analysis. The study was conducted with novice developers (i.e., Bachelor
students at the University of Basilicata) to evaluate their satisfaction when using the
Eclipse framework and to assess the framework effectiveness and efficacy. To
accomplish the study, the subjects were asked to develop a simple Java program and
to maintain an existing Java software system. The survey shows a good satisfaction
degree of all the involved subjects, while the empirical analysis reveals that the

75

effectiveness and the efficacy of the Eclipse framework can be considered
appropriate. It is worth noting that at best of our knowledge this is the first study that
aims at assessing the effectiveness and efficacy of the Eclipse framework to support
novice developers in the development and maintenance of Java source code.

In the future we plan to conduct a further analysis on the gathered data using
statistical tests. For example, we will investigate whether the programming
experience and the known IDEs influence subjects’ satisfaction and performances.
Future work will be also devoted to replicate the study in different contexts with
subject with different background. Finally, we aim at comparing the IDEs Eclipse and
Netbeans. The motivation for conducting this comparison relies on the fact that they
are widely adopted both in academic and industrial contexts.

References

1. L. Briand, K. E. Emam, D. Surmann, I. Wiekzorek, K. Maxwell, “An Assessment and
Comparison of Common Software Cost Estimation Modeling Techniques”. In Proc. of
International Conference on Software Engineering, Los Angeles, USA, 16-22 May, 1999,
pp. 313-322.

2. A. Dix, J. Finlay, G. Abowd, R. Beale, Human-Computer Interaction, 2nd edition,
Prentice-Hall, 1994.

3. J.E. Hannay and M. Jørgensen, “The Role of Deliberate Artificial Design Elements in
Software Engineering Experiments”. IEEE Transactions on Software Engineering, vol. 34,
no. 2, 2008, pp. 242-259.

4. ISO 9241-11 “Ergonomics of human-system interaction - Part 11 Guidance on usability”,
1998.

5. A. Koohang, “Expanding the concept of usability”. In Informing Science: The
International Journal of an Emerging Transdiscipline, Eli Cohen Editor, vol. 7, 2004, pp.
129-141.

6. M. Matera, M.F. Costabile, F. Garzotto, and P. Paolini, “SUE Inspection: an Effective
Method for Systematic Usability Evaluation of Hypermedia”, IEEE Transactions on
Systems, Man and Cybernetics- Part A, vol. 32, no. 1, 2002, pp. 93-103.

7. J. Nielsen. “Usability engineering”. In New York: Academic Press, 1993.
8. J. Nielsen. “Usability testing”, In Handbook of human factors and ergonomics, G.

Salvendy Editor, New York: John Wiley, 1997, pp. 1543-1568.
9. A. N. Oppenheim, “Questionnaire Design, Interviewing and Attitude Measurement”,

Pinter Publishers, 1992.
10. S. L. Pfleeger and W. Menezes, “Marketing technology to software practitioners”, IEEE

Software, vol. 17, no. 1, 2000, pp. 27-33.
11. K. Ricks,B. A. Arnoldy, “How to conduct your own usability study”. In Proceedings of

International Professional Communication Conference, IEEE Computer Society Press,
Portland, OR, USA, 2002, pp. 115-126.

12. E.M. Rogers. “Diffusion of Innovation”, 4th edition, Free Press, New York, 1995.
13. B. Shneiderman, “Designing the User Interface”, Third Edition, Addison Wesley

Longman, Inc. 1998.
14. E. Stensrud, I. Myrtveit, “Human Performance Estimation with Analogy and Regression

Models”. In Proceedings of the METRICS 98 Symposium, 1998, Bethesda, Maryland,
USA, pp. 205-213.

76

Exploring Eclipse possibilities to realize Mashups

Paolo Maresca1, Giuseppe Marco Scarfogliero2, Lidia Stanganelli3,
Giacomo Franco4, Gianfranco Nota5

1 Università degli Studi di Napoli Federico II paolo.maresca@unina.it,

2 Università degli Studi di Napoli Federico II, g.scarfogliero@studenti.unina.it
3 Università degli Studi di Genova lidia.stanganelli@unige.it,

4 IBM Italia S.P.A., giacomo.franco@it.ibm.com,
5 Università degli Studi di Salerno nota@unisa.it

Abstract. In this paper we propose Eclipse platform as a great solution to the
problem of designing and developing mashup applications. Thanks to its
modular and pliable architecture, Eclipse can be used to satisfy all mashup’s
application needs, allowing developers to act at each level of a mashup
application, from the simple action of retrieving, managing and mashing data to
combine complex structures or architectures to obtain real mashup applications
and to bring them to web, using all new Eclipse’s web 2.0 features. The
combined use of the Open Source technology of Eclipse and the mashup
philosophy gives to enterprises, universities, research centres, freelancers,
industries, and to each person that needs an application built to satisfy his own
needs, the possibilities to obtain the application they need in a simple and quick
way, with all the support of the Eclipse community. For enterprises this means
building situational applications to manage all the enterprise business processes
that the major Enterprise Applications cannot treat due to the particularities of
them. The specific nature of these processes and their less relevance in the
global mission of an enterprise make them less attractive for software houses
and customers due to the high costs of designing and development. Costs that
the proposed solution can cut easily. For universities and research centres this
solution can be the right way to integrate and mash information and data
belonging to these two worlds, often too less interconnected. For freelancers
and other people this can be a real possibility to simplify their activities and
improve productivity.
In conclusion we show also the aim the governs the Eclipse community and the
constant rejuvenation process that gives us more trust on the future possibility
in this way.

77

1 Introduction

Today, the information can be considered one of the main resources on which is
concerned large part of the economical, political and social interests. Some theorist,
looking at our society, speaks about the Information Age, basing on the idea that the
current age is characterized by the ability of people to transfer information freely, and
to have instant access to a shared knowledge. This idea is the direct consequence of
the digital revolution in information and communication technologies, that has created
the platform for a free flow of information, ideas and knowledge across the globe.
This revolution has made a profound impression on the way the world functions.
Mass media broadcast in real time information belonging to every zone of the globe,
telecommunications interconnect people, the Internet has become an important global
resource, on which are based many business and social relations.
So the main problems are to manage this enormous variety of information, to extract
knowledge from data, to link together right information to build new knowledge,
because data without a right contextualization cannot bring any useful information.
The problem of information management is very complex and cannot be treated
exhaustively in this paper, but everyone will agree that in a global connected world
there is the need to select, manage, use and mash all information belonging to the
different information sources to obtain in a quicker and easily way the answer a
person need.

The computer science, with its storage, elaboration, and communication
capabilities, can help the human in this aim. The philosophy that governs mashups
can be a possible solution to this problem: giving everyone the possibility of mashing
data belonging to different information sources and use them to build his own web
application that can help him to solve by himself his particular problem.

This approach can suit many different scenarios in which the aggregation and
manipulation of data is needed. Let’s think for example the simple case of a complex
enterprise whose departments are geographically distant or less interconnected, many
times managing information is very difficult. Or let’s think about an educational
scenario where some university, private institutes or other organizations produce
some resources on the same argument, for a student or a researcher involved in the
study of this theme, it would be very useful to mash them. Or again, let’s think about
a freelancer or a simple person that wants to make a personal activity smarter using
personal and free information that can bring from the internet.

Another important consideration for the industry scenario, that adds value to the
mashup solution, born from the fact that the Information Technology scenario is
having a deep evolution, under the unceasing pressure of Market, that every days
shows new needs. This change is led by technology evolution process, which offers
innovative business opportunities due to new discoveries.

The Software production sector for enterprises is certainly one of the most
interested scenarios by this changing: next to the Enterprise Applications, developed
by IT as solution to the largest part of an enterprise business problems, there is the
need for Situational Applications, software built ad hoc to manage particular business
processes linked to the different realities. Very often the resources destined to the
production of these applications are limited, because of the lower relevance that they
have in the global mission. The tendency is to adopt low quality software or to use

78

non conventional alternatives, using software built for other purposes to achieve own
goals.

The main difficulty to invest in the production of software of this kind is in the
“artistic” and “social” nature of the business processes to model, in the sense that their
particularity and specificity do not allow their implementation in Enterprise
Applications.

So, the challenge is to provide very flexible, agile and low cost methods and
processes to develop Situational Applications, in order to exploit the business
opportunity represented by the “Long Tail”.

The possibilities offered by web 2.0 technologies are some of the most accredited
solutions to this problem. In this scenario Mashups have a great relevance.

2 Mashup

The word “mashup” recurs in some different context, assuming each time a
different meaning; for example:

� In music, a mashup is a song or composition created by blending two or more
songs, usually by overlaying the vocal track of one song seamlessly over the
music track of another.

� In cinematography, a video mashup is the combination of multiple sources of
video, which usually have no relevance with each other, into a derivative work
often lampooning its component sources, or another text.

� In digital production, a digital mashup is a digital media file containing any or
all of text, graphics, audio, video and animation drawn from pre-existing
sources, to create a new derivative work.

From these definitions, although the clear difference among the objects they
define, is evident that the basis concept is the same: to mix and mash some objects to
obtain a new, derivative and complex one. Mashups arises exactly from this idea.

One of the first example in this way was the work done by John Snow during the
colera outbreak in London during 1854. He placed on a city map all the deaths and all
the water pumps and analyzing the information built with this mashup, he understood
that the water was the main vehicle of cholera.

Within the computer science the word mashup assumes another new meaning:
A mashup is a lightweight web application, which allows users to remix

information and functions belonging to different sources and to work with them to
build software in a completely new, simple and quick way. The user can efficiently
model their own business process under the own vision of the problem, achieving a
result so particular and specific that is impossible to obtain with the older
technologies.

Mashups stands on the fundamental concept of data and services integration; to
operate in this way there are three main primitives: Combination, Aggregation and
Visualization.

� The first allows to collect data from heterogeneous sources and to use them
within the same application;

� the second primitive allows to operate on collected data having a measure and
building new information starting from them;

79

� the last is used to
objects.

In a technological
problem, the natural r
level/pyramidal approa

In the lowest abstrac
by them. They represe
secure way.

In the immediately
and on demand service

A great level of abs
application framework

On the Code Libra
technologies related to
or to allow the access t

On the top of the py
platforms that suppor
graphical elements and

3 Eclipse

The mashup pyram
that sometimes cannot
in internet. To obtain t
need to act on each of
obtain a flexible and co

As direct consequ
environment, capable
flexible architecture, a
drives the developer th
the final application.

o integrate data in a visual way using maps or other m

view of the Mashup and of its data and services in
representation of the problem itself can be obtaine
ach.

Fig. 1. The Mashup Pyramid

ction layer there are Data Feeds and web technologies
ent a good solution to access to updated data in a q

superior level live the APIs, used to obtain data dy
es.
straction is achieved by Code Libraries, that can be t

ks and API packages built to resolve some kinds of pro
ary level stands the Gui Tools level, made of wid

o the composition of small graphical applications to s
to a service.
yramid there’s the Platform level, composed by all the
rt mashup applications building, allowing to compo
d lower level data.

mid shows well the complexity level of a mashup ap
be clear, due to the common and diffused basic use of
the maximum results from mashup process, infact, th
f pyramid levels in the application building process i
omplete development process of a mashup application
uence, there is the need of an integrated dev
to adapt itself to each kind of need thanks to its mo

allowing to face every aspect of the mashup problem
hrough all the production process till deployment and

multimedia

ntegration
d using a

s involved
quick and

ynamically

thought as
oblems.
dgets and
show data

e tools and
ose single

pplication,
f mashups
here is the
n order to

n.
velopment
odular and
m and that

testing of

80

These requisites ar
“Eclipse” [1,2], that c
architecture.

Eclipse in its last m
by an open community
multiple faces that it ca

• A first usage that ca
applications, using W
(PDT) to build
programming mode

• A more interesting
of Eclipse archite
Framework, doesn’t
environment in whic

Adopting the secon
one of the main dire
architecture allows 5
diagram [3].

The lowest level is
have no integration wit

The “Invocation” le
and services external t
external processes dis
manager to start them
association registry ind

“Data” level is certa
platform, in fact, allow
structure and to provi
way.

The “API” integratio
the Data level is balanc

re well satisfied by the Open Source Development
can greatly adapt itself to every scenario thanks to its

meaning "an open, extensible platform for tool integra
y of tool providers" is perfect for the mashup aim, d
an show:

an be done is the simple use of Eclipse as IDE to buil
Web Tools Platform (WTP) [1] or PHP Development
specific mashup applications, following the t

l, and then deploy them to an application server.
usage is to build mashup application using all possib
ecture, leveraging Eclipse as Application and
t renouncing to the facility of using Eclipse as the dev
ch manage the entire production process.

d option, great importance covers integration capabili
ectives of the Eclipse project from its birth: the
different integration levels as represented in the

Fig. 2. The Eclipse Integration Pyramid

s “None – No Integration” which represents the pos
th other external tools if this integration is not needed.
evel represents the integration obtained by invocatio
to Eclipse within the platform itself. Services are ex
stinct from the IDE one, using the same Eclipse
m. Platform gives the possibility to manage a too
dependent from the Operative System one.
ainly the one that offers the greatest level of integratio
ws to collect data from heterogeneous sources, to giv
de them to own applications, in a coherent and ver

on level graft perfectly on Data level. The extreme fle
ced by the need of decode, understand and maintain in

t Platform
s modular

ation built
due to the

ld web 2.0
t Tools [1]
traditional

ble feature
Runtime

velopment

ity, that is
platform

following

ssibility to
.
n of tools

xecuted as
e resource
l-resource

on. Eclipse
ve them a
ry flexible

exibility of
ntegrity of

81

Data. Using APIs allo
way, so the programm
data. With APIs there
demand action on data
define its own APIs an
components.

On the top of the py
or application to shar
application perfectly
applications.

4 Points of Co

The integration cap
mashups [4,5]. This c
pyramids will be find.
levels and the Eclipse I

Fig. 3.

4.1 Data Level

The “Data” level o
Feeds, base of mashup
belonging to other so
very interesting in b
convergence between
web services external t

Eclipse Galileo offe
“Data Tool Platform”
Reporting Tool” (BIRT

4.1.1 Data Tool Plat

DTP [6] born form
to develop or manage
give a unique environm

w to access data in a coherent, secure and especially
mer can release the burden of dealing of the explicit m

is the introduction of the concept of service, intended
a. The modular structure of Eclipse allows each appl
nd services that become usable by the platform itself

yramid there is GUI integration level, which allows m
e the platform Graphical User Interface becoming a
integrated in the IDE structure, starting from

onvergence

pabilities of Eclipse platform suggest to use Eclipse
can be done if an association between the levels o

There is a clear correspondence between the Mashup
Integration Pyramid ones:

Correspondence between Mashup-Eclipse pyramids

of Eclipse Integration Pyramid allows to greatly man
p pyramid, extending this possibility to all other struct
ources like heterogeneous Databases. This perspectiv
building enterprise mashups, in which often ther
data belonging to Enterprise Databases and data bel

to own enterprise infrastructure.
ers many opportunities in this way, we focus our att
(DTP) [6] project and the famous “Business Intellig

T) [7].

tform

the need of having a good set of tools in a unique env
data-centric systems. So the project aim is very amb

ment in which you can manage different kind of dat

y dynamic
manage of
d as an on
lication to
and by its

many tools
an unique

different

e to build
of the two
p pyramid

nage Data
tured Data
ve appear
re is the
longing to

tention on
gence and

vironment
bitious: to
ta sources.

82

This is achieved using the Open Data Access (ODA) framework, which realizes the
connection with the most common data sources: XML, Web Services, CSV files and
JDBC.

Actually the main developing efforts are in relational databases frameworks and
tools, making DTP a very good environment to manage a large variety of Database
Systems; SQL Development Tools component is one of the most powerful tool
developed to this purpose. Interesting is the use of DTP made by “IBM pureQuery”,
which furnishes an Eclipse environment where DTP features for accessing databases
can be used in a very simple way by Java developers, during the application
development activity, directly from the code.

In conclusion, DTP project seems a very good candidate to realize the
correspondence between the two Data levels of the pyramids, but in the actual version
it shows all its limits, due to a very poor support to ODA sources, very important for
mashup applications. In our opinion, to begin to be very useful for mashups DTP
must evolve to support ODA sources the same way it does with Databases.

4.1.2 Business Intelligence and Reporting Tool

BIRT (Business Intelligence and Reporting Tool) [7] is a top-project of Eclipse
community [1]. Its main aim is to build reports doing business intelligence on web
applications. We are not interested in BI capabilities, but the way a report is built is
very interesting for mashups, in fact BIRT reports consist of four main parts: data,
data transforms, business logic and presentation. Data and data transforms are perfect
for our purposes.

As we can read on Birth Homepage [1]:

• Data - Databases, web services, Java objects all can supply data to your BIRT
report. BIRT provides JDBC, XML, Web Services, and Flat File support, as well
as support for using code to get at other sources of data. BIRT's use of the Open
Data Access (ODA) framework allows anyone to build new UI and runtime
support for any kind of tabular data. Further, a single report can include data from
any number of data sources. BIRT also supplies a feature that allows disparate data
sources to be combined using inner and outer joins.

• Data Transforms - Reports present data sorted, summarized, filtered and grouped
to fit the user's needs. While databases can do some of this work, BIRT must do it
for "simple" data sources such as flat files or Java objects. BIRT allows
sophisticated operations such as grouping on sums, percentages of overall totals
and more.

• Business Logic - Real-world data is seldom structured exactly as you'd like for a
report. Many reports require business-specific logic to convert raw data into
information useful for the user. If the logic is just for the report, you can script it
using BIRT's JavaScript support. If your application already contains the logic, you
can call into your existing Java code.

• Presentation - Once the data is ready, you have a wide range of options for
presenting it to the user. Tables, charts, text and more. A single data set can appear
in multiple ways, and a single report can present data from multiple data sets.

In conclusion, we can say that BIRT has very good data retrieving and
transforming capabilities, which usage is very interesting in mashup building. Besides

83

the Business Logic and HTML Presentation capabilities gives to this project many
possibilities to realize application logic and presentation of a some simple kinds of
mashup. The limit is that the final product is not a real application, but only a report.

4.1.3 The importance of web services

One of the most interesting data and services source for mashups is represented by
web services, because using them allows to link services belonging to Enterprise
Service Oriented Architecture (SOA) and services belonging to an external Web
Oriented Architecture (WOA). Actually service integration in Eclipse is managed by
Data level through ODA drivers or by API level through specific plugins.

Another interesting possibility is the “Web Services” project that is a sub-project in
the Eclipse Web Tools Platform Top-Level Project [8], composed by JST Web
services component and WST Web services component. The first contains tools for
developing and interacting with Java Web services, the latter contains tools for Web
services development which is not Java specific.

Essentially WOA, that is a subset of SOA, describes a core set of Web protocols
like HTTP and plain XML as the most dynamic, scalable, and interoperable Web
service approach. The only real difference between traditional SOA and the concept
of WOA is that WOA advocates REST, an increasingly popular, powerful, and simple
method of leveraging HTTP as a Web service in its own right.

WOA architecture emphasizes generality
of interfaces (UIs and APIs) to achieve global
network effects through five fundamental
generic interface constraints:

1. Identification of resources
2. Manipulation of resources through

representations
3. Self-descriptive messages
4. Hypermedia as the engine of application

state
5. Application neutrality

This generalization enable us to match
easily WOA resources with Mashup Pyramid.

4.2 API level

The “API” level allows to realize integration through platform API and Plugins
that compose the particular installation. The modular structure of Eclipse makes easy
to use external APIs or Code Libraries in a native manner or managing them through
particular plugin. A famous example of the last possibility is offered by the “gdata-
java-client-Eclipse-plugin” which, after installed, gives the opportunity to easily
create Java application that uses the common Google APIs. These possibilities make
the platform itself a natural candidate in realizing the right integration required from
Mashup’s “API” and “Code Libraries” levels.

Fig. 4. SOA and WOA comparison
architecture

84

4.3 GUI level

The “GUI” level is certainly one of the most powerful and tested integration level
in Eclipse. The extreme simplicity that characterizes the extension of the development
environment and its graphical personalization makes the platform adapt to realize any
kind of application, beginning from different applications too, using perspectives,
views and editors. So, Eclipse results to be the perfect environment in which integrate
mashup application widgets directly in its architecture, with the whole flexibility,
support and easiness of integration in the platform. Eclipse is a unique environment
in which realize the development of the environment itself.

Plugin Development Environment (PDE) and Rich Client Platform (RCP) are two
of the most famous projects that may help in this aim. The first allows to build
components to add to Eclipse structure, the latter allows to leverage the structure of
Eclipse to realize an RCP application.

4.4 Eclipse and Web 2.0

Last fundamental step is to bring the realized Eclipse mashup application on the
web. Because of its genesis as stand-alone software development tool, sometimes are
not clear the real possibilities of Eclipse in the web 2.0 field. There are many projects
that allow the platform to be accessible and usable from the web using a common
browser:

4.4.1 Eclifox

 Among all these projects one of the most interesting is the “Eclifox” [9] plugin
developed as IBM Alphawork; it makes available a remote Eclipse instance on the
web through Jetty web server, transforming SWT based GUIs on XUL based GUIs.
XUL is the famous language used by Mozilla products like Firefox.

4.4.2 Rich Ajax Platform
Another important perspective is brought by the project “Rich Ajax Platform”

(RAP) [10]. This Project allows to design Ajax applications based on Eclipse in a
simple way very similar to RCP Application building, substituting SWT widget
library with RWT built for web. So RAP is a very good candidate to mashup
application’s GUI building, because the entire application is transformed in a web 2.0
application, using the common Java technologies for server-side programming
without the need for an Eclipse instance running on a server.

5 Eclipse and Jazz

Another great advantage in using Eclipse is the convergence in act between the
Eclipse project and Jazz platform [11]: the introduction of Jazz candidates Eclipse as
a complete tool which allows the collaborative development and the managing of the
whole software life cycle. These innovations perfectly agree with mashup philosophy.

Jazz is an IBM initiative to help make software delivery teams more effective, Jazz
transform software delivery making it more collaborative, productive and transparent.

The Jazz initiative is composed of three elements:

� An architecture for lifecycle integration
� A portfolio of products designed to put the team first

85

� A community of stakeholders.

5.1 An architecture for lifecycle integration
Jazz products embody an innovative approach to integration based on open,

flexible services and Internet architecture. Unlike the monolithic, closed products of
the past, Jazz is an open platform designed to support any industry participant who
wants to improve the software lifecycle and break down walls between tools.

5.2 A portfolio of products designed to put the team first
The Jazz portfolio consists of a common platform and a set of tools that enable all

of the members of the extended development team to collaborate more easily. The
newest Jazz offerings are:

• Rational Team Concert is a collaborative work environment for developers,
architects and project managers with work item, source control, build management,
and iteration planning support. It supports any process and includes agile planning
templates for Scrum and the Eclipse Way.

• Rational Quality Manager is a web-based test management environment for
decision makers and quality professionals. It provides a customizable solution for
test planning, workflow control, tracking and reporting capable of quantifying the
impact of project decisions on business objectives.

• Rational Requirements Composer is a requirements definition solution that
includes visual, easy-to-use elicitation and definition capabilities. Requirements
Composer enables the capture and refinement of business needs into unambiguous
requirements that drive improved quality, speed, and alignment.

Jazz is not only the traditional
software development community of
practitioners helping practitioners; it
is also customers and community
influencing the direction of products
through direct, early, and continuous
conversation. Fig.6 shows Db2 on
campus project community
monitored by using Jazz tools [5].
The project organization of the

project was 130 students 4 thesis
student about, and was stimulated by
using team concert application. Jazz
is also a process definition framework including agile and personalized processes.

The contribute that the adoption of Jazz can give to mashup development process
is enormous, allowing to use mashups to realize a complex software system, thanks to
its possibility of managing the lifecycle and the production team, in the same way it is
done for a traditional software system.

Of

Fig. 5. Db2 on campus project – Jazz

86

6 CityInformation: a mashup example using BIRT
To underline the real possibilities of Eclipse in

mashup developing, we developed CityInformation,
a simple example on how Eclipse BIRT project can
be used to realize a mix of data belonging to
different data sources.

CityInformation shows to the user some
information on an user chosen American City in the
form of a BIRT HTML report.

When the application starts, it asks the user to
insert the name of the city to display information
(Fig. 7).

Fig. 6. Enter Parameters

Then the application invokes some free web
services to retrieve some information on the city:

The webservice WeatherForecast [12] supplies
weather forecast information for all the week and
the geographic position of the city. Longitude and
Latitude are used to display the city map by Google
Maps [13] using a mashup with an external website.
Under the map, forecast information are displayed
grouped by day, showing an image and the expected
temperatures.

The Amazon webservice [14] is used to obtain a
list of the most sold Travel Guides of the City on
Amazon.com; each book is displayed to the user
with its own cover image. Fig.8 shows the report
obtained requesting information on the city of San
Francisco.

7 Conclusions and future development

In this paper we showed our belief in mashups as very good solution to many kind of
problems and the need of an integrated environment in which exploit all the
possibilities given by mashup philosophy. We believe that Eclipse platform is a great
candidate for this purpose thanks to its modular and flexible architecture that allows
to manage every abstraction level of the mashup pyramid [15,16].

Fig. 7. Report on San Francisco

87

As future development we aim at integrating first and second mashup pyramid with
the corresponding two Eclipse levels. A common project is also growing grouping
together Napoli and Salerno University with IBM and their business partner with the
aims to research new mashup methodologies, technologies and best practices [17,18].
This collaboration is a great opportunity to integrate knowledge belonging to these
different realities, mashing together open-source solutions, university’s resources and
technologies from enterprises development environments, and to have the possibility
to prove that Eclipse and mashups can be the base to build solutions to many
problems of modern enterprises and organizations.

References

1. Eclipse foundation http://Eclipse.org

2. Eclipse italian community at DIS of
University Federico II of Naples
http://Eclipse.dis.unina.it

3. Jim Amsden
Levels of Integration: five ways you can
integrate with Eclipse platform
http://www.Eclipse.org/articles/Article-
Levels-Of-Integration/levels-of-
integration.html

4. Maresca P. (2009)
La comunità Eclipse italiana e la ricerca nel
web3.0: ruolo, esperienze e primi risultati
Slide show for Mashup meeting at
University of Salerno.

5. Maresca P. (2008)
Projects and goals for the Eclipse italian
community
in Proceedings of Fourteenth International
Conference on Distributed Multimedia
Systems (DMS2008), Boston , USA,
September 4 - 6, pp.112-117.

6. Eclipse Data Tooling Platform web site
 http://www.Eclipse.org/datatools/

7. Eclipse Business Intelligence and
Reporting Tool web site
http://www.Eclipse.org/birt/

8. Web Tools Platform web site

http://www.Eclipse.org/webtools/

9. Eclifox web site
http://www.alphaworks.ibm.com/tech/eclif
ox

10. Eclipse Rich Ajax Platform web site
 http://www.Eclipse.org/rap/

11. Jazz http://jazz.net

12. Weather Forecast webservice:
http://www.webservicex.net/WeatherForec
ast.asmx?WSDL

13. Google Maps API:
http://code.google.com/intl/it-IT/apis/maps/

14. Amazon webservices:
http://webservices.amazon.com/AWSECo
mmerceService/AWSECommerceService.
wsdl

15. P.Maresca, G.M.Scarfogliero, L.
Stanganelli (2009)

 Eclipse: a new way to Mashup,
 in Proceedings of DMS2009, San Francisco

Bay, USA, September 10-12, to be
published.

16. L.Colazzo,A.Molinari, P. Maresca, L.

Stanganelli (2009)
Mashup learning and learning communities,
in Proceedings of DMS2009, San Francisco
Bay, USA, September 10-12, to be
published.

17. IBM developerWorks Mashup section
http://www.ibm.com/developerworks/spaces
/mashups

18. Duane Merril (2006)
Mashups: The new breed of Web app
http://www.ibm.com/developerworks/web/li
brary/x-
mashups.html?S_TACT=105AGX01&S_C
MP=LP

88

A Design Pattern Detection Plugin for Eclipse

Christian Tosi, Marco Zanoni, and Stefano Maggioni

Università degli Studi di Milano-Bicocca, DISCo - Dipartimento di Informatica,
Sistemistica e Comunicazione, 20126 - Milan, Italy

{christian.tosi,marco.zanoni,maggioni}@disco.unimib.it

Abstract. It is well known that software maintenance and evolution
are expensive activities, both in terms of invested time and money. Re-
verse engineering activities support the obtainment of abstractions and
views from a target system that should help the engineers to maintain,
evolve and eventually re-engineer it. An important task pursued by re-
verse engineering is design pattern detection, whose main objective is
the identification of the design pattern instances that have been used in
the implementation of a system, that let the practitioners focus on the
overall architecture of the system without minding at the programming
details it has been implemented with.
In this context we propose an Eclipse plug-in called MARPLE (Metrics
and Architecture Reconstruction Plug-in for Eclipse), which supports the
detection of design patterns through the use of basic elements that are
mechanically extracted from source code. The development of this plat-
form ismainly based on the exploitation of the Eclipse framework, relying
also on two plugins: Java development tools (JDT) for code analysis and
the Graphical Editing Framework (GEF) for results visualization.

Key words: Reverse Engineering, Design Pattern Detection, Static Anal-
ysis and Eclipse Plugin

1 Introduction

A software engineering research area that is getting more and more importance
for the maintenance and evolution of software systems is reverse engineering [5,
16]. A relevant objective of this discipline is to obtain representations of the sys-
tem at a higher level of abstraction and to identify the fundamental components
of the analyzed system by retrieving its constituent structures. Getting this infor-
mation should greatly simplify the restructuring and maintenance activities, as
we obtain more understandable views of the system and the system can be seen
as a set of coordinated components, rather than as a unique monolithic block.
Considering these components, particular relevance is given to design patterns
[10].

Hence the design patterns detection (DPD) activity is particularly relevant
in the context of reverse engineering and program comprehension.

The main objective of DPD is to gain a better comprehension of a software
system and on what kind of problems have been addressed during the develop-
ment of the system itself. The presence of DP can be considered as an indicator

89

of good software design, as design patterns are reusable for their self definition.
Moreover, they are very important during the re-documentation process, in par-
ticular when the documentation is very poor, incomplete or not up-to-date.

Different tools for DPD have been proposed in the literature (e.g. [12, 8, 18,
22, 25]). They usually have problems in finding all the design patterns of the
GoF catalogue [10], some tools recognize only a small subset of these patterns,
but the main problem is that the found results contain many false positive DP
instances and moreover they usually don’t scale well when trying to analyze
medium/large systems.

The aim of this paper is to describe a project, on which we are currently
working, named MARPLE (Metrics and Architecture Reconstruction PLug-in
for Eclipse). MARPLE’s architecture has been designed in order to be language
independent, even if until now we have performed our analysis on Java systems.

Our approach to design pattern detection is based on the detection of design
pattern subcomponents ([2, 1]), which can be considered indicators of the pres-
ence of patterns. We use static source code analysis: the Abstract Syntax Trees
(ASTs) of the analyzed projects are parsed in order to obtain the structures we
need for our elaboration, which we called basic elements (BE).

MARPLE is conceived as an Eclipse plug-in. This choice was supported by
two main reasons: first of all, Eclipse is the most used open source development
framework, it is supported by a wide community of developers, and it is strongly
based on the concept of extending its functionalities through the implementation
of plug-ins. The second reason resides in the fact that this platform encourages
the strong interaction among the various components that constitute the frame-
work; therefore, the implementation of our plug-in is based on the exploitation
of the functionalities of other plug-ins and modules of the Eclipse framework.
This reuse of components improves and speed up the development process.

The paper is organized as follows: Section 2 briefly introduces some tools
for design pattern detection and other for software architecture reconstruction;
Section 3 introduces the overall MARPLE architecture and goes into more de-
tails about the technologies, plug-ins and libraries used during its development;
Section 4 presents some results about DPD; Section 6 gathers the conclusions
and outlines possible future works.

2 Related works

Probably the only thing all research groups involved in reverse engineering agree
on, is that manual inspection is not feasible or very expensive and tool support
is necessary.

For example, the manual detection of DPs and reconstruction of the architec-
ture of a system without the aid of automatic procedures require a preliminary
study of the whole system, which can take, for large systems, a lot of time.

The time required to understand the system, to a sufficient extent and to
become confident with it, is certainly not linear with its size, and might be
so long that when the task is accomplished, the knowledge gained is already

90

outdated. This is due to the relations within the parts, which increase in number
and complexity as long as the size of the system increases; other causes are
emergency repairs and wild maintenance, which have made things even worse,
by introducing additional coupling between the system’s components.

In this section we give an overview on the main DPD tools and approaches.

2.1 Design pattern detection

SPOOL [14] stands for Spreading Desirable Properties into the Design of Object-
Oriented, Large-Scale Software Systems. The authors outline three possible ways
of detection: manual, automatic, and semi-automatic, the first two of which are
supported in SPOOL. Automatic recovery is implemented through queries to a
previously generated repository.

The Pat system [21] transforms C++ source code into PROLOG facts and
matches them against pattern definitions given as PROLOG statements. The
approach is based on first-order logic and constraint solving techniques. The
authors claim that this system is able to detect many pattern instances without
missing any, and with few false positives. Although we cannot verify the truth
of these assertions, we can easily imagine the high computational costs of this
approach. In addition, only header files are examined, so no behaviour is available
for them.

PTIDEJ tool [12] uses constraint solving with explanation. Explanation con-
sists in first detecting instances matching DP definitions exactly, and then, by
relaxing some constraints, entities that are less and less similar to DPs.

The MAISA tool [20] uses a library of patterns defined as sets of variables,
representing the patterns roles, and unary or binary constraints over them. A
solution of the constraint satisfaction problem is a possible instantiation of those
variables. To be able to detect instances which do not correspond exactly to
the definition, it is possible to relax it by removing some constraints, but the
number of candidates tends to increase quickly. A similar approach has been
used in the Columbus tool [4], in which patterns are defined by using an XML
based language called Design Pattern Markup Language (DPML) and searched
for in an Abstract Semantic Graph (ASG) generated by the tool itself.

Web of Patterns [6] uses an approach to the formal definition of design pat-
terns based on the web ontology language (OWL). This prototype accesses the
pattern definitions and detects patterns in Java software. The tool connects
to a pattern server, downloads and scans the patterns, translates them into
constraints, and resolves these constraints with respect to the program to be
analysed.

Pinot [23] is a modification of Jikes [13], IBMs Java compiler, developed
to detect various design patterns based on static rule-based analysis. The au-
thors present an interesting, but arguable, reverse engineering oriented reclassi-
fication of the GoF design patterns into different categories: patterns provided
by the programming language, syntax-based patterns, semantic-based patterns,
domain-specific patterns and patterns that aren’t but mere generic concepts.

91

Fujaba [17] uses fuzzy logic combined with Fujaba Abstract Syntax Graphs
to cope with two different types of pattern variations, design variants and imple-
mentation variants. They address the former with ASGs, by modeling various
design variants with different graphs, and then handle implementation variants
by defining a set of fuzzy rules together giving the degree of belief that a pattern
is found at a certain location in the program.

SPQR [25] uses Elemental Design Patterns (EDPs) and a system for logical
calculus, the 𝜌-calculus, to detect DPs. The authors claims that the tool can
detect design patterns, but at present no evidence is provided and it is not
possible to verify the results.

3 An overview on MARPLE

An overview of the overall architecture of MARPLE is depicted in Figure 1 that
shows the general process of data extraction, of design pattern detection and of
results visualization.

The information that is used by MARPLE is obtained by an Abstract Syntax
Tree (AST) representation of the analyzed system through the JDT plugins.

DPD receives the set of basic elements that have been found inside the sys-
tem, collected in an XML file. By basic elements we mean a set that is formed
by Elemental Design Patterns (EDPs) [24], design pattern clues [15] and micro
patterns [11], that are intended as the basic information we exploit as hints for
the presence of design patterns inside the code, and as basic relationships that
may connect two or more classes in terms of object creation, method invocation
or inheritance.

The architecture is constituted by five main modules, that interact with one
another through XML data transfers. The four modules are the following:

– The Information Detector Engine which collects both basic elements and
metrics starting from an AST representation of the source code of the ana-
lyzed project;

– The Joiner, that extracts architectures from the project that could match
those of design patterns, basing on the information extracted by the Infor-
mation Detector Engine;

– The Classifier, which tries to infer whether the architectures detected by
the Joiner could effectively be realizations of design patterns or not. This
module helps to detect possible false positives identified by the Joiner and
to evaluate the similarity with the canonical design patterns by assigning
different confidence values;

– The activity of Results visualization provides an organic view of the project
analysis results. Through this activity, the user will see the results produced
by the detection of design patterns .

As we have outlined, the MARPLE project leans on the Eclipse framework
and hence many functions did not need to be rewritten, but have been imple-
mented by extending the core concepts provided by the platform. Obviously,

92

�������	
����	�	������
�

���
������	��	�	��

��
�����		����	�	
��

����	���
����
��	
��

�������������	�����	�

��
��

 ����
!�

������
	
���
���

���

"�#

Fig. 1. The architecture of MARPLE.

many functionalities have also been implemented by using third party libraries,
like XML data access or graph representations. All the modules work on XML
files that come from some previous modules. Each of these modules works on
these files, both for reading and writing, with the Apache XMLBeans library [9].

In the following, we will discuss the components we exploited in the imple-
mentation of each module constituting MARPLE, discussing the reasons about
the choices we made and the effectiveness of these components in pursuing our
objectives.

3.1 The Information Detector Engine Module

Currently, the Basic Elements Detector (BED) sub-module has been completely
developed and tested. The basic elements are extracted by visitors that parse an
AST representation of the source code, each of them returning instances of the

93

basic elements if the analyzed classes or interfaces actually implement them. The
information is acquired statically and is characterized by 100% rate of precision
and recall. This value is due to the fact that these kinds of structures aremeant to
be mechanically recognizable, i.e. there is always a 1-to-1 correspondence between
a basic element and a piece of code. In other words, the basic elements are not
ambiguous (as on the contrary design patterns may be), and once a basic element
has been specified in terms of the source code details that are used to implement
it, the basic element can be detected without any problem.

We didn’t implement an AST structure from scratch, but we used the JDT
library that provides all the classes and interfaces that can be used to access a
project’s ASTs. Moreover, it provides the class ASTVisitor, that is used to visit
the nodes constituting the AST according to the Visitor design pattern [10].
Therefore, one visitor for each basic element has been extended from ASTVisitor.
These visitors are invoked sequentially on the ASTs of the classes constituting
the project and visit only those nodes that may contain the information they
are able to detect (for example, the visitors that look for method call EDPs
only analyze nodes that represent a method invocation, i.e. instances of the
MethodInvocation class).

The results coming from the visitors, i.e. the instances of basic elements that
have been found inside the project, are then stored in an XML file.

The BED module has been developed also for the .NET environment [7].

3.2 The Joiner Module

As far as the Joiner module is concerned, no particular third party technologies
have been used. Nonetheless, this module does not handle the system through
its AST representation, but it manages it as a graph Attributed Relational Graph
(ARG) , where the set of vertices corresponds to the set of types (i.e. classes and
interfaces) the project is constituted by, while the edges are the set of basic

elements that connect the types with one another. In fact, each basic element

can be seen as a relationship between a type and another one (therefore depicted
as an edge between two nodes of the graph), or as a relationship between a
class and itself (depicted as a self loop on a graph node). The system graph
representation is directly derived from the output generated by the Information
Detector Engine. As we have briefly anticipated at the beginning of this section,
this module tries to extract architectures that match a target structure, defined
in terms of Joiner rules. A Joiner rule is a graph that collects roles and basic

elements (edges) that must be present among the roles in order to satisfy the
rule. In particular, we have to define rules to extract candidate design pattern
instances. In this way the roles in the rule are the roles of the target design
pattern. For example, if we want to extract the couple of roles (𝑅1, 𝑅2), where
𝑅1 has a create object and a delegate method call to 𝑅2, we may represent this
rule as shown in Figure 2.

The Joiner module tries to match and extract this kind of architectures from
the graph representing the system through an ad-hoc graph matching algorithm.
The algorithm has been demonstrated to have linear complexity in the number

94

R1 R2

createObject

delegate

Fig. 2. An example of Joiner rule.

of the classes of the system. All the details of the algorithm and the complexity
demonstration can be found in [27].

The extracted architectures are then inspected by the Classifier module
which tries to infer whether they can represent instances of design patterns
or not.

3.3 The Classifier Module

The Joiner output is the input for the next analysis step performed by the
Classifier module. This module takes all the candidate design pattern instances
and tries to evaluate their grade of similarity to the searched design pattern
in order to be able to rank the instances given as output. Figure 3 shows an
example of the classification process. Through our current approach, we generate
every possible validmapping {(𝑅1, 𝐶1), (𝑅2, 𝐶2), . . . , (𝑅𝑛,𝐶𝑛)} for each pattern
instance, where each 𝐶𝑖 is the class that is supposed to play the role 𝑅𝑖 inside
the pattern. These mappings are all of fixed size (an element for each pattern
role) and each class has a fixed number of features, where the features are the
basic element retrieved in the class. In this way each mapping can be represented
as a vector of features whose length is given by (𝑛𝑢𝑚 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 𝑛𝑢𝑚 𝑟𝑜𝑙𝑒𝑠).
These vectors are grouped by a clustering algorithm, producing k clusters; each
pattern instance is represented as a k -long vector, having in each position i the
absence/presence of the i -th mapping. Since we know that an instance is a DP
or not directly from the training set, we can enqueue to each vector the class
attribute and use the resulting dataset for the training of a supervised classifier.

In the Classification Module we used the clustering and classification algo-
rithms provided in Weka [19]. All the detail of classification process can be found
in [26].

95

Design Pattern Istance

Role Mappings Generator

Role Mapping 1 Role Mapping n

CLUSTER
k

New Design Pattern Representation

CLASSIFIER
Wrong

Correct

R1

R2 R3

R1 R2 R3 R1 R2 R3

... ci ...c1 ck

Fig. 3. Classification process.

3.4 Results visualization

This module, using the GEF framework, depicts the found patterns in order to
allow users to better understand them. It allows to visualize the results in two
way:

Joiner model: this visualization (as depicted in Figure 4) organizes the pat-
terns following their definition;

Graph: this visualization (as depicted in Figure 5), organizes the pattern as
a graph where the nodes are the classes involved in the pattern, the colors
of the nodes are the roles in the pattern and finally the edges are the basic
elements connecting two classes.

96

Fig. 4. Joiner model visualization

Fig. 5. Graph visualization

4 Conclusions and future works

In this paper we have presented MARPLE, a tool for design pattern detection
that is being developed as an Eclipse plug-in. We are very interested in using
such capabilities also in the context of systemmodernization and in particular for
what concerns systems migration to SOA. In this context, we have also explored
if detecting design patterns in a system can give useful information towards the
migration of the system [3].

Currently, some modules have been completely implemented and we are cur-
rently working on others.

The Information Detector Engine has been completely developed as far as
the Basic Elements Detector is concerned. It detects all of the elemental design
patterns, clues and micro pattern we think are useful as hints for design pattern
detection.

As far as the Joiner is concerned, we have defined rules for the extraction
of DP instances for the Abstract Factory, the Builder, the Factory Method, the
Prototype, the Singleton, the Adapter (both based on classes and on objects),
the Composite and the Proxy design patterns. Rules for the remaining patterns
are under development.

97

We have developed the Classifier module, which proved us that we can suc-
cessfully extract information from our representation of the problem, as the
performance values are higher than the apriori ones. We are currently analysing
if, adding or removing some basic elements, we could improve the performances.

Future works are related to complete the detection of all the Design Patterns
of [10], to add new views based on both metrics and basic elements and to better
integrate all the modules: we started the implementation of MARPLE through
the development of separated modules, but now we need them to cooperate in
order to enhance the user experience and to let the tool to be more effective.
Moreover we would like to complete the benchmark for the comparison of design
pattern detection tools.

Since the design of MARPLE architecture has been done in order to be
language independent, future works will consider other languages as for example
C++.

References

1. F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato. A comparison of reverse engi-
neering tools based on design pattern decomposition. In ASWEC ’05: Proceedings
of the 2005 Australian conference on Software Engineering, pages 262–269, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

2. F. Arcelli and C. Raibulet. The role of design pattern decomposition in reverse
engineering tools. In Pre-Proceedings of the IEEE International Workshop on Soft-
ware Technology and Engineering Practice (STEP 2005), pages 230–233, Budapest,
Hungary, 2005.

3. F. Arcelli, C. Tosi, and M. Zanoni. Can design pattern detection be useful for
legacy systemmigration towards soa? In SDSOA ’08: IEEE Proceedings of the
2nd international ICSE Workshop on Systems development in SOA environments,
pages 63–68, New York, NY, USA, 2008. ACM.

4. Z. Balanyi and R. Ferenc. Mining design patterns from c++ source code. In ICSM
’03: Proceedings of the International Conference on Software Maintenance, page
305, Washington, DC, USA, 2003. IEEE Computer Society.

5. E. J. Chikofsky and J. H. C. II. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, 1990.

6. J. Dietrich and C. Elgar. Towards a web of patterns. Web Semant, 5(2):108–116,
2007.

7. D. F.Arcelli, L.Cristina. nmarple: .net reverse engineering with marple. In Pro-
ceedings of WOOR 2007, ECOOP Workhop, Berlin, 2007.

8. R. Ferenc, F. Magyar, A. Beszedes, A. Kiss, and M. Tarkiainen. Columbus - reverse
engineering tool and schema for c++. In ICSM ’02: Proceedings of the International
Conference on Software Maintenance (ICSM’02), page 172, Washington, DC, USA,
2002. IEEE Computer Society.

9. T. A. S. Foundation. Xmlbeans. Web site. http://xmlbeans.apache.org/.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995.

11. J. Y. Gil and I. Maman. Micro patterns in java code. SIGPLAN Not., 40(10):97–
116, 2005.

98

12. Y.-G. Guéhéneuc. Ptidej: Promoting patterns with patterns. In Proceedings of
the 1st ECOOP Workshop on Building a System using Patterns. Springer Verlag,
2005.

13. IBM. Jikes. Web site. http://jikes.sourceforge.net.
14. R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé. Pattern-based reverse-

engineering of design components. In ICSE ’99: Proceedings of the 21st inter-
national conference on Software engineering, pages 226–235, Los Alamitos, CA,
USA, 1999. IEEE Computer Society Press.

15. S. Maggioni. Design pattern clues for creational design patterns. In Proceedings
of the DPD4RE Workshop, co-located event with IEEE WCRE 2006 Conference,
Benevento, Italy, 2006.

16. H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley, and K. Wong.
Reverse engineering: a roadmap. In ICSE ’00: Proceedings of the Conference on
The Future of Software Engineering, pages 47–60, New York, NY, USA, 2000.
ACM.

17. U. Nickel, J.Niere, J. Wadsack, and A. Zundorf. Roundtrip engineering with fujaba.
In Proc of 2nd Workshop on Software Reengineering (WSR), Germany, 2000.

18. J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and J. Welsh. Towards pattern-
based design recovery. In ICSE ’02: Proceedings of the 24th International Confer-
ence on Software Engineering, pages 338–348, New York, NY, USA, 2002. ACM.

19. U. of Waikato. Weka. Web site. http://www.cs.waikato.ac.nz/ml/weka/.
20. J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A. I. Verkamo. Software

metrics by architectural pattern mining. In Proceedings of the International Con-
ference on Software: Theory and Practice (16th IFIP World Computer Congress),
pages 325–332, Beijing, China, 2000.

21. L. Prechelt and C. Kramer. Functionality versus practicality: Employing exist-
ing tools for recovering structural design patterns. Universal Computer Science,
4(12):866–883, December 1998.

22. N. Shi and R. A. Olsson. Reverse engineering of design patterns for high per-
formance computing. In Proceedings of the 2005 Workshop on Patterns in High
Performance Computing, 2005.

23. N. Shi and R. A. Olsson. Reverse engineering of design patterns from java source
code. In ASE ’06: Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, pages 123–134, Washington, DC, USA, 2006.
IEEE Computer Society.

24. J. Smith. An elemental design pattern catalog. Technical Report 02-040, Dept. of
Computer Science, Univ. of North Carolina - Chapel Hill, December 2002.

25. J. M. Smith and P. D. Stotts. Spqr: Flexible automated design pattern extraction
from source code. In ASE ’03: Proceedings of the 18st IEEE/ACM International
Conference on Automated Software Engineering, pages 215–224, 2003.

26. C. Tosi. Marple: classification techniques applied to design pattern detection.
Master’s thesis, Università degli studi di Milano-Bicocca, 2008.

27. M. Zanoni. Marple: discovering structured groups of classes for design pattern
detection. Master’s thesis, Università degli studi di Milano-Bicocca, 2008.

99

XTGT: un tool estensibile per la generazione di
test suite

Laura Bottanelli

Università degli studi di Bergamo, Facoltà di Ingegneria

Sommario Il plugin XTGT è stato sviluppato per aiutare il tester du-
rante la fase di testing del software, trovando una suite di test composta
dal minor numero possibile di casi test, permettendo di ridurre il tem-
po e le risorse utilizzate per il test. XTGT offre l’opportunità al tester
di scegliere la copertura combinatoriale e il model checker da utilizzare
per ricavare i casi di test. Per il progetto è stata creata una piattaforma
estensibile sfruttando la piattaforma di Eclipse.

1 Introduzione

La fase di test del software ricopre una parte molto importante nel processo di
sviluppo del software, e, spesso, richiede molto tempo e molte risorse per la sua
esecuzione. Il Model Based Testing è un metodo di testing del software molto
utilizzato, nel quale i casi di test derivano, in tutto o in parte, da un modello che
descrive gli aspetti più significativi del sistema sottoposto a test (System Under
Test - SUT).

Il plugin è stato sviluppato per aiutare chi deve effettuare il testing del soft-
ware con il Model Based Testing, creando la test suite con il minior numero di
casi di test da eseguire, risparmiando cos̀ı tempo e risorse. Il tester non deve far
altro che scrivere il modello del software (specifiche), scegliere il tipo di coper-
tura e il model checker, uno strumento in grado di risolvere problemi di logica,
utilizzato in XTGT per ricavare i casi di test necessari. Il risultato sarà una suite
di casi di test ridotta, da utilizzare per eseguire il testing del software.

2 Plugin XTGT

Il problema descritto nel paragrafo precedente è stato risolto creando una pi-
attaforma estensibile, utilizzando la piattaforma di Eclipse, che permette di in-
trodurre diversi tipi di copertura e diversi model checker. Il tester potrà scegliere
la copertura e il model checker più adatto alle sue esigenze.

XTGT si basa sull’idea di ATGT [1], uno strumento per la generazione
automatica di sequenze di test a partire da un modello del sistema.

Il plugin sfrutta le potenzialità degli Extension Points, per aggiungere ulte-
riori funzionalità al plugin. In particolare, nel progetto di tesi, sono stati ag-
giunti due model checker: Yices ed Hysat, in grado di aumentare la velocità di

100

Figura 1. Esempio di utilizzo del plugin XTGT.

risoluzione del problema (Yices) [2], e di aumentare la potenzialità di descrizione
del software, consentendo di utilizzare anche delle specifiche non lineari (Hysat).

In figura 1 è illustrato un esempio di utilizzo di XTGT. Nella finestra cen-
trale di XTGT è presente il modello del software, in quella di sinistra il tipo di
copertura scelto e le variabili coperte, mentre nella finestra di destra si possono
notare i dettagli del test che si vuole coprire (test predicate).

Riferimenti bibliografici

1. Andrea Calvagna and Angelo Gargantini. A Logic-Based Approach to Combinatorial
Testing with Constraints. In Bernhard Beckert and Reiner Hähnle, editors, Tests
and Proofs, Second International Conference, TAP 2008, Prato, Italy, April 9-11,
2008. Proceedings, volume 4966 of Lecture Notes in Computer Science, pages 66–83.
Springer, 2008.

2. Andrea Calvagna and Angelo Gargantini. Combining Satisfiability Solving and
Heuristics to Constrained Combinatorial Interaction Testing. In Tests and Proofs,
volume 5668 of Lecture Notes in Computer Science, pages 27–42. Springer, 2009.

101

Awareness in un plug-in per Shared Editing

Annunziato Fierro, Ilaria Manno, Pasquale Vitale

ISISLab, Dip. Informatica ed Applicazioni,
University of Salerno, Italy

{annunziato.fierro@email.it, manno@dia.unisa.it, paco86v@gmail.com}

L’editing collaborativo è una attività sincrona e distribuita che consente ad
un gruppo di utenti di modificare uno stesso documento contemporaneamente e
ottenere in real time le modifiche apportate dagli altri utenti. Le informazioni
circa la posizione in cui sta scrivendo un utente, dove si trova il suo cursore
o quale porzione di testo sta selezionando rappresentano informazioni di con-

sapevolezza del processo di shared editing. In questa demo viene presentato il
lavoro svolto per aggiungere informazioni di consapevolezza al un plug-in Real
Time Shared Editor (RT Shared Editor) [5] sviluppato nell’ambito del progetto
Eclipse Communication Framework (ECF) [3] della comunità di Eclipse.

RT Shared Editor offre funzioni di editing collaborativo per due utenti: essi
saranno in grado di lavorare contemporaneamente su un unico file sorgente vi-
sualizzando le modifiche apportate dall’altro utente in tempo reale. RT Shared
Editor affronta il problema della consistenza del contentuto del file tramite una
implementazione dell’algoritmo Cola [4]. Oltre alla visualizzazione delle modi-
fiche apportate, RT Shared Editor non offre informazioni di consapevolezza circa
la posizione all’interno del file in cui stava lavorando l’altro utente.

Il lavoro che stiamo presentando aggiunge a RT Shared Editor tali infor-
mazioni, consentendo agli utenti di sapere non solo le modifiche apportate dall’al-
tro utente, ma in generale su quale porzione di testo si trova il cursore o la
selezione dell’altro utente. Tali informazioni di consapevolezza sono state ag-
giunte allo Shared Editor utilizzando i vertical ruler della componente grafica
dell’editor e modificando le caratteristiche di visualizzaione del testo per eviden-
ziare il testo su cui sta operando l’altro utente. I vertical ruler sono i ‘righelli’
laterali che vengono visualizzati a destra e sinistra degli editor di eclipse; su di
essi è possibile applicare dei marker; un marker è rappresentato da una icona
informativa e può essere posizionato lungo un vertical ruler in corrispondenza
di una posizione del file. Il vertical ruler a sinistra contiene i marker associati
alle posizioni del file che sono visibili all’interno dell’area dell’editor (visione lo-
cale), mentre il vertical ruler a destra contiene i marker associati alle posizioni
dell’intero file (visione globale), anche quelle non attualmente visibili nell’area
dell’editor. I vertical ruler e i marker sono stati utilizzati in modo da indicare la
posizione dove sta lavorando l’altro utente: lungo i vertical ruler viene inserito
dinamicamente un marker in corrispondenza della riga in cui si trova il cursore
o la selezione dell’altro utente.

Oltre alle informazioni visualizzate tramite i marker sui vertical ruler, ven-
gono fornite informazioni più dettagliate sulla posizione di ciascun utente all’in-
terno del file grazie alla possibilità di modificare la visualizzazione del testo: viene

102

modificato il colore di sfondo del testo selezionato dall’altro utente (awareness
della selezione) o dei caratteri adiacenti al cursore (awareness del cursore).

RT Shared Editor è stato progettato per avere esattamente due utenti che
collaborano. Uno sviluppo interessante riguarda la possibilità di avere più utenti
che partecipano all’editing. Questa modifica è stata implementata portando il
plug-in con le funzioni di awareness all’interno di CoFFEE [6–8]. CoFFEE è un
Collabortive Face to Face Educational Environment basato su Eclipse, utilizzato
in classe per supportare l’apprendimento collaborativo tramite computer. Le ap-
plicazioni principali sono il Session Player ed il Session Client; sviluppate come
Rich Client Application, esse consentono di integrare nel sistema tool collabora-
tivi. Poiché CoFFFE prevede la collaborazione di n utenti, abbiamo implemen-
tato una versione del plug-in sviluppato a partire da RTShared Editor come tool
di CoFFEE. In questa versione abbiamo modificato l’editor in modo che oltre ai
due utenti che possono scrivere, fosse possibile avere n utenti in grado di leggere
ed effettuare selezione del testo. Non è stato possibile modificare il numero di
utenti che possono scrivere (due) poiché questo è un limite di Cola, l’algoritmo
che gestisce la consistenza del file. Il passaggio a n utenti ‘lettori’ consente a
tutto il gruppo di utenti che partecipa alla sessione collaborativa di vedere le
modifiche apportate al file. Questa versione del plug-in è stata modificata in
modo da ottenere la consapevolezza circa la posizione di tutti gli utenti ‘lettori’,
oltre che degli ‘scrittori’.

References
1. Annunziato Fierro: Editor Cooperativi in CoFFEE. Master Thesis, 2009.
2. Pasquale Vitale: Editor Cooperativi in Eclipse con la consapevolezza delle oper-

azioni. Master Thesis, 2009.
3. Eclipse Communication Framework: www.eclipse.org/ecf
4. Cola: http://wiki.eclipse.org/RT_Shared_Editing#The_Cola_Source
5. Real Time Shared Editor: http://wiki.eclipse.org/RT_Shared_editing
6. De Chiara, Di Matteo, Manno, Scarano: CoFFEE: Cooperative Face2Face Educa-

tional Environment. In Proc. of the 3rd Int. Conf. on Collaborative Computing: Net-
working, Applications and Worksharing (CollaborateCom 2007), New York, 2007.

7. Manno, Belgiorno, De Chiara, Di Matteo, Erra, Malandrino, Palmieri, Pirozzi,
Scarano: Collaborative Face2Face Educational Environment (CoFFEE). In Proc.
of 1st Int. Conf. on Eclipse Tecnhologies (Eclipse-IT 2007), 2007.

8. CoFFEE: http://coffee-soft.org

103

Interactive Graphical Maps for Infocenter via Model to
Model Transformation

Enrico Oliva

ALMA MATER STUDIORUM–Università di Bologna, Cesena, Italy

Abstract. In this work we discuss an Eclipse based Model to Model (M2M)

transformation to generate interactive graphical maps related to Darwin Informa-

tion Typing Architecture (DITA) and delivered by the Eclipse Infocenter. The

maps are shown and manage with a extension of Prefuse run-time interpreter

that accepts in input instance of GraphXMLmodel. The obtained system is called

GIMI (Graphical Interactive Map into Infocenter). M2M transformation is real-

ized by mapping rules among the DITA Schema and GraphXML expressed in

Xtend, a model transformation language provided by the openArchitectureWare
(oAW) framework. The M2M approach allows us to reach a clear separation be-

tween structures and interpreters and a more maintainable generation of code.

Orthogonally, the realization of functionalities specific to domain-related user

actions is leaved to extensible run-time interpreters.

1 GIMI Overview

The goal of our project is exploit the Darwin Information Typing Architecture (DITA)

[1] to design an build interactive graphical map to be delivered by the Eclipse Help Sys-

tem Infocenter - the Internet-based scenario used by IBM to support its online Manual

Management System (MMS). The resulting navigation system is called GIMI (Graph-

ical Interactive Map into Infocenter).

Graphical maps are used to give visual supports for understanding and representing

knowledge. In fact, different map styles can be exploited to emphasize different aspects

of the information given by the eContents and to allow users to perceive concepts in

different ways. In our project, the maps are show and managed by a run-time interpreter

which is an extension of the Prefuse toolkit [2], that accepts in input models instances

of GraphXML and provides interactive functionalities such as zooming, filtering and

detailing-on-demand.

To provide the input of the graphical maps we realize a model to model trans-

formation [3] that statically links domain parts (DITA) to presentation parts (maps in

GraphXML) by running mapping rules defined among both meta models. The rules are

expressed in xTend a model transformation language provided by the openArchitecture-
Ware (oAW) framework.

The logical architecture of the generation system is shown in the picture 1. The

content model (written with the help of a DITA editor) is given as input to the trans-

formation process together with the transformer specification M2MSpec expressed in

Xtend. The model (instance of the NavMap model) obtained as result of the transfor-

mation becomes the input of the runtime rendering library (Prefuse).

104

Fig. 1. Model to model transformation process.

Our final intent is to extend the Infocenter visual interface in order to allow learners

to use a map as a new form of navigation inside the contens as manual. To this end

we introduce in the Infocenter the graphical map provided by a Java Applet included

in a new frame (NavmapFrame) to be shown at the client site. The task of the new

frame is to load the applet with the right configuration file generated from the model

transformation. The result is depicted in figure 2.

In order to improve the use of the map also as the input device to add annotation

and to organize navigation into customizable reading paths. We have defined a Domain

Specific Language (DSL) [4] by introducing a new formal model for content organiza-

tion [5] from which to start the map generation process.

Fig. 2. GIMI resulting user interface.

1.1 Model to Model Transformation

The use of model to model transformation has several architectural and development

advantages. First of all it introduces a clear separation point in the overall architec-

ture between structures and interpreters with the advantage of system modularization.

Moreover, in case of refactoring, this transformation is more maintainable being directly

105

connected with both meta model (source and target). This type of solution promotes a

strong reuse of code, by inserting maintainable transformation.

The transformation system is based on a set of Eclipse plugins, by exploiting the

openArchitectureWare (oAW) framework [6], which is a modular MDA/MDD generator

suite implemented in Java. oAW has strong support for EMF-based models [7] but can

work with other models, too (e.g. UML2, XML, XSD or simple JavaBeans) through the

specific mapping with the Ecore independent model.

Mapping rules are expressed in oAW Xtend, which a general purpose transforma-

tion language that enables to build functions over meta model elements, by means of

a compact syntax and powerful supports for model management. Xtend has special

operators to work on collection; the major drawback is that it is not compliant with the

standard QVT and has no support for debugging.

1.2 Conclusions

The M2M approach was successful because it was available the Eclipse and oAW

framework that provide the right abstraction to easily implement Model Driven Soft-

ware Development techniques as the use of static-mapping. The final attended result

was reached, the GIMI system improves Infocenter navigability by showing interac-

tive graphical map. A working example of the map is available on the web at the link:

lia.deis.unibo.it/ Staff/Enrico.oliva/WebMap/Map_wrapper.htm.

Acknowledgement

The authors are grateful for technical assistance and collaboration received from the

IBM Tivoli Lab in Rome.

References

1. Harrison, N.: The Darwin Information Typing Architecture (DITA): Applications for global-

ization. Professional Communication Conference IPCC 10-13 (2005) 115 – 121

2. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualization.

In: CHI ’05: Proceedings of the SIGCHI conference on Human factors in computing systems,

New York, NY, USA, ACM (2005) 421–430

3. Brown, A.W., Iyengar, S., Johnston, S.: A rational approach to model-driven development.

IBM Systems Journal 45(3) (2006) 463–480

4. Natali, A., Oliva, E., Bonanni, C.: Model-driven generation of graphical maps for e-contents.

In Lanubile, F., ed.: Eclipse-IT 2008. 3rd Italian Workshop op on Eclipse Technologies. (nov

2008) 48–57

5. Natali, A., Del Cinque, A., Oliva, E.: Using eclipse in building model-driven e-learning sup-

ports. In Maresca, P., ed.: Eclipse: a Great Opportunity for Industry and Universities in Italy.

Volume 1., Cuzzolin Editore (October 2007) 27–42 1st International Conference on Eclipse

Technologies (Eclipse - I 2007), Napoli, Italy.

6. itemis AG: openarchitectureware 4.3. http://www.openarchitectureware.org/

7. Budisnsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling Framework.

(2004)

106

Eclipse-L: Un ambiente integrato open source
per la didattica universitaria mobile

Mauro ROCCO

Università di Napoli “Federico II” - mauro.rocco@gmail.com

1. Introduzione

Gli studenti, che escono dai licei, arrivano ai corsi di base universitari con una scarsa
conoscenza degli elementi della logica e dei concetti di analisi e sintesi, ma
soprattutto con una scarsa abitudine a cooperare costruttivamente e ad organizzare il
proprio lavoro soprattutto se innestato in un progetto.
Con queste premesse, si è sviluppato un ambiente integrato di strumenti che possono
essere utilizzati per le attività didattiche (ma non solo) dei corsi di primo livello
universitario. Gli strumenti sono tutti open source ed ospitati su una architettura più
generale ed estendibile quale quella di Eclipse che incoraggia e favorisce la
costruzione di soluzioni innovative.

2. Struttura del sistema Eclipse-L

Il sistema Eclipse-L (Eclipse Learning) nasce nel 2008 composto da tre sottosistemi:
1. LCE (Learning and cooperative environment),�

Esso offre a tutti gli studenti una valida piattaforma per la cooperazione
durante lo svolgimento di corsi didattici, degli homeworks e per
effettuare esercitazioni e attività di laboratorio, il tutto in un unico
ambiente continuamente migliorato dai preziosi suggerimenti degli
studenti e continuamente aggiornato.�

2. IT-SL (Italian community with second life project),�
Permette a tutti gli studenti di beneficiare dei privilegi offerti dal
sottosistema “LCE“ tramite l’interattività con piattaforme esterne
all’architettura Eclipse-L. E’ stato realizzato un canale di comunicazione
con “Secondo Life” [14], ambiente virtuale sempre più conosciuto ed
usato dai giovani.�

3. L&E (Lab & exams). �
Realizzato per focalizzare l’attività di natura didattica finalizzata
all’acquisizione dei CFU, consentendo agli studenti di condurre attività
di laboratorio anche da remoto su multi-piattaforma e multi-dispositivo.

Nel 2009 la piattaforma è stata migliorata ed arricchita con l’aggiunta di:
4. IDS (Interactive Didactical support),

Pensato per offrire un collegamento diretto tra gli studenti e il docente.
Questo strumento può essere utilizzato sia dal docente, per organizzare

107

una video lezione (in diretta o in differita), sia dagli studenti per
richiedere al docente spiegazioni e/o chiarimenti avvalendosi di una
pratica lavagna virtuale, di videocamera e microfono, nonché di canale
per la condivisione di file.

5. LS (Logic simulator),
Realizzato per l’attività di natura didattica finalizzata all’acquisizione
dei CFU, offrendo agli studenti uno strumento di simulazione grafica
per i circuiti logici combinatori.

6. S3 (System support for student)
Per offrire agli studenti una supporto/guida alle ormai tante funzionalità
implementate nell’architettura Eclipse-L, con la vantaggiosa possibilità
cui ogni studente ha nel poter inserire, aggiornare e correggere le
informazioni pubblicate, garantendo il servizio sempre aggiornato e
utile.

L’importanza del progetto consiste nell’offrire allo studente la possibilità di usare gli
strumenti messi a disposizione in modo completamente facile ed efficace, privo di
ogni limitazione dettata dalla piattaforma e/o dal dispositivo.
Lo studente non è più legato alla piattaforma usata per accedere a tali servizi, al tipo
di collegamento utilizzato, al luogo in cui si trova, né al dispositivo che ha a
disposizione.
Cambia la metodologia di insegnamento: non più incentrata attorno al docente (cui
prima era l’unico ente per la divulgazione delle informazioni e nozioni), ma sempre
più a contorno della figura dello studente, che può strutturare l’offerta formativa con
estrema facilità e come più ritiene opportuno.
Nasce la figura del Mobile-Student: uno studente libero dai vincoli geografici ed
economici, utilizzatore di applicativi software di tipo “cloud-software”.
Questi vantaggi, in ambito universitario, sono visti con maggior interesse dallo
studente che può muoversi liberamente tra le varie strutture del campus, usare i
servizi didattici nel tempo a disposizione e quindi lontano dai vincoli stringenti dovuti
allo studio delle numerose materie che ci possono essere all’interno di un qualunque
corso di laurea.

3. Eclipse IDS – Videocomunicazione per lezione e supporto

La piattaforma di comunicazione aggiunta al sistema Eclipse-L offre, sia agli studente
quanto ai docenti, potenti strumenti di comunicazione. “IDS” è un modulo di
interazione tra Moodle e OpenMeetings.
L’uso di “Red5”, un server video per Flash e su Openlaszlo, applet Java per
realizzare applicazioni Flash a partire dal codice Laszlo, ha permesso la creazione di
stanze virtuali in cui è possibile organizzare videoconferenze, con l’ausilio di
webcam, microfoni e di una lavagna virtuale “Whiteboard” su cui è possibile
proiettare delle presentazioni (file), oppure usare la lavagna virtuale come proiettore
del desktop del docente.

108

4. Eclipse L&S – Eclipse Lab & Exams

L’interazione tra Eclipse e Moodle avviene per mezzo del plug-in appositamente
creato e che quindi permette, in un ambito didattico, di offrire servizi utili alla
formazione e alla verifica dell’ utente verso un particolare tipo di corso.
Il plug-in fornisce una serie di strumenti necessari all’ interazione tra utente e
piattaforma Eclipse, la quale potrà essere utilizzata con un qualunque tipo di
linguaggio di programmazione, di sviluppo o di modellazione (java, python, php,
UML, XML, etc..).

5. Eclipse LS – Eclipse Logic Simulator

LS è un simulatore di circuiti logici per uso didattico. Questa applicazione è fruibile
agli studenti per mezzo di un framework (GMF & EMF) di base che traduce ogni
oggetto iconografico in pratiche stringhe XML.
E’ prevista una futura possibilità di affiancare all’applicazione un Server Web AJAX,
per rendere l’applicativo fruibile tramite rete, nonché l’introduzione del “concetto
tempo” per gestire anche le condizioni temporali e dunque permettere allo studente di
poter simulare anche circuiti logici sequenziali.

6. Eclipse S3 – System Support for Student

La piattaforma S3 (System Support for Students) è rivolta allo studente bisognoso di
informazioni, guide e dimostrazioni. Realizzata con l’uso di un motore MediaWiki,
completamente gratuito e open-source, è sempre più utilizzata da tutti gli studenti che
hanno espresso meno indugi durante le fasi d’esame nonché un maggiore interesse
verso il mondo accademico.

7. Conclusioni

In questo lavoro si è mostrato l’integrazione fra tecnologie allo scopo di costruire un
ambiente multipiattaforma e multi dispositivo nonché un valido supporto informativo
utile per il mobile-student.
L’ambiente Eclipse-L è oggi utilizzato sperimentalmente presso i laboratori del D.I.S
della facoltà d ingegneria dell’ateneo Federico II di Napoli.
Il progetto è stato realizzato dal punto di vista e necessità dello studente che affronta
per la prima volta l’ambiente didattico universitario, offrendo un supporto sempre
attivo, pronto, efficace e conveniente.
L’uso dell’intera piattaforma attraverso un qualunque Browser Web (come Firefox)
garantisce un elevato livello di compatibilità per gli utilizzatori, nonché svincola lo
studente dai macchinosi metodi di studio, rendendolo sempre più libero e dinamico.

109

EifFE-L® incontra Eclipse

D. Brondo, L. Stanganelli
DIST - Dipartimento di Informatica Sistemistica e Telematica – University of Genoa

{diego.brondo, lidia.stanganelli}@unige.it

Abstract. In questo lavoro viene descritto il progetto di integrazione della
piattaforma open source per la formazione in rete EifFE-L (Environment for
Freedom in E-Learning) all’interno della piattaforma open source Eclipse, al
fine di creare un ambiente di sviluppo aperto per l'e-learning e il knowledge
management modulare e facilmente estendibile.

Keywords. e-learning environment, eclipse environment, cooperative
environment, knowledge management, knowledge sharing.

1 Introduzione

In questo lavoro viene presentato il progetto di integrazione dell’ambiente open
source EifFE-L (Environment for Freedom in E-Learning) [www.eiffe-l.org]
all’interno della piattaforma open source Eclipse [eclipse.org], al fine di creare un
ambiente di sviluppo aperto per la formazione e la gestione della conoscenza,
cercando in questo modo di rispondere alle crescenti esigenze di formazione e
formazione continua. EifFE-L è un LCMS (Learning Content Management System)
realizzato all'interno del Progetto CampusOne, promosso dalla CRUI, ed è una
applicazione open source costruita in linguaggio Free Pascal [1,2]. La possibilità di
usufruire della piattaforma Eclipse, costituisce il vero e proprio motore di innovazioni
in quanto consente di realizzare applicazioni estensibili ed indipendenti dalla
piattaforma hardware e software utilizzata. Il progetto si propone di sviluppare un
ambiente integrato di strumenti che possono essere utilizzati per le attività didattiche
(ma non solo) di corsi universitari e per il long-life learning. Il nuovo strumento si
avvale dell'infrastruttura tecnologica offerta da EifFE-L per la gestione della
conoscenza la profilatura e gestione degli utenti e le protezioni sugli accessi e sfrutta
il framework estendibile di Eclipse che incoraggia e favorisce la costruzione di
soluzioni innovative. Un altro aspetto significativo del progetto di integrazione di
EifFE-L all’interno dell’ambiente Eclipse (che citiamo da questo punto in poi come
EM : EifFE-L meets Eclipse) riguarda la creazione di ambienti simulativi da
utilizzare all’interno di percorsi e-learning.

110

2 L’architettura di sistema

La comunità Eclipse [3] ha mostrato un forte interesse per l’e-learning sviluppando,
diversi plugin inerenti a questa tecnologia. In questo lavoro si vuole descrivere la
realizzazione di un macro-sistema contenente diversi strumenti per la didattica e,
nell’ottica di offrire un servizio sempre più completo all’utente (discente), si è pensato
di integrare un sistema già esistente e funzionante quale EifFE-L all’interno di Eclipse
Gavab (che è una particolare versione di Eclipse). Quindi è stato realizzato un
wrapper, ovvero, l’intero sistema EifFE-L è stato integrato all’interno della
piattaforma Eclipse. In figura 1 viene rappresentata tale integrazione.

Fig.1 Integrazione di EifFE-L in Eclipse Gavab

Si è partiti dalla versione di EifFE-L in Free Pascal funzionante e si è proceduto
alla sua integrazione all’interno di Eclipse Gavab, da qui vengono compilati i sorgenti
ottenendo il file .dll che verrà caricato in Apache per l’effettiva esecuzione. La
caratteristica fondamentale del wrapping è quella di sfruttare al massimo tutte le
proprietà del vecchio sistema in modo semplice e fornire una nuova interfaccia per la
gestione e lo sviluppo del sistema. In questo modo si potranno aggiungere nuove
funzionalità o semplicemente rendere disponibile la vecchia applicazione nel nuovo
ambiente. Eclipse Gavab è una distribuzione di Eclipse, multipiattaforma, realizzata
dal gruppo di ricerca GAVAB del Dipartimento di Informatica dell’Università Rey
Juan Carlos di Madrid. EifFE-L, la cui architettura è illustrata in figura 2 [1,2], ha la
funzione di un LCMS (Learning Content Management System) con funzionalità di
VLE (Virtual Learning Environment) classico ed è uno dei nuclei della formazione
tradizionale attualmente utilizzato presso l’Ateneo di Genova. Il lavoro è stato
sviluppato nell’ambito di un progetto comune fra il DIS dell’Università di Napoli
Federico II, il Laboratorio di E-Learning & Knowledge management del DIST
dell’Università di Genova [www.elkm.unige.it], e la comunità italiana di Eclipse,
Eclipse italian community [eclipse.dis.unina.it]. Di fatto il livello di integrazione
raggiunto è giusto al di sotto della API. L'applicazione viene evocata dalla
piattaforma Eclipse connettendosi al database remoto esistente, Firebird.

111

Fig. 2 Architettura del sistema EifFE-L

4 Conclusioni

L’integrazione di EifFE-L all’interno di Eclipse Gavab offre diversi vantaggi legati
alla virtualizzazione attraverso un browser dell’intera piattaforma di e-learning che ne
garantisce espandibilità, facilità di accesso, di uso e di installazione. Inoltre, attraverso
il progetto EifFE-L incontra Eclipse, la comunità internazionale open source del Free
Pascal “incontra” la comunità open source internazionale Eclipse.

L’esperienza è stata anche un'utile sperimentazione delle possibilità
dell’architettura Eclipse e della sua comunità di pratica sul versante del riuso sia di
applicazioni legacy che di database open source. Lo sviluppo si intravede in uno
scenario di servizi web dove anche l’utente, non necessariamente uno studente nella
accezione classica del termine, fruisce di un servizio personalizzabile sia nel processo
di formazione che nelle risorse delle quali può fruire. L’uso di tali applicazioni sono
svariate: dall’uso nella formazione universitaria all’uso nella formazione degli
studenti re-immessi nei percorsi formativi dopo esserne usciti, dalla costituzione di
classi eterogenee con obiettivi didattici personalizzabili, infine nella formazione di
comunità di pratica aperte.

Bibliografia

1. Adorni G., Premuda G. , The e-learning environment of the University of Genoa:
An open source SCORM and W3C compliant platform, Didamatica 2004

2. Adorni G., Sugliano A.M , Buone pratiche per l’E-Learning all’Università:
Insegnamenti blended e corsi on line, CRUI, Roma, 2005, pp.191-226.

3. Maresca P., “Projects and goals for the eclipse italian community”, in
Proceedings of Fourteenth International Conference on Distributed Multimedia
Systems (DMS2008), Boston , USA, September 4 - 6, 2008, pp.112-117.

112

Model Driven Software Development con Eclipse,
StatechartUMC ★

Aldi Sulova

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo - CNR”
Via G. Moruzzi 1, 56124 Pisa, Italy

aldi.sulova@isti.cnr.it

Sommario StatechartUMC è un editor grafico che semplifica la gener-
azione del codice testuale associato ad un’UMC statechart. Tale codice
rappresenta l’input per il model checker UMC [1]. StatechartUMC appli-
ca la tecnica MDSD (Model Driven Software Development) ed il lavoro
per la sua costruzione si suddivide in varie fasi: definizione del mod-
ello di dominio, costruzione di un’editor grafico per creare istanze del
modello, trasformazioni da modelli predefiniti standard (UML) e scrit-
tura di generatori di codice. Tutto questo è realizzato mediante tools
open source basati sulla piattaforma Eclipse [2]: Eclipse RCP [3], Eclipse
Modeling Framework (EMF) [4], Graphical Modeling Framework (GMF)
[5] e Open Architecture Ware (oAW4) [6].

Key words: MDSD, Eclipse, EMF, GMF, oAW4, RCP

1 Introduzione

L’obiettivo principale di StatechartUMC è di semplificare la creazione del-
l’istanza di input per il model checker UMC. Senza approfondire le conoscenze
su UMC, possiamo dire che un’istanza di input viene espressa come un modello
a nodi ed archi basato su statecharts UML. A questo punto si può pensare ad
uno strumento che modella graficamente le istanze e a partire da queste gen-
era il codice testuale eseguibile da UMC. L’idea di base è quella di definire un
modello attraverso diagrammi dai quali poter eseguire operazioni di verifica e
validazione e naturalmente ottenere completamente o parzialmente il codice. Si-
curamente creare un diagramma è più semplice che scrivere il corrispondente
codice testuale. L’applicazione dell’approccio MDSD allo strumento risulta es-
sere la scelta più ragionevole. L’MDSD è un tentativo di portare il processo di
sviluppo software verso un livello più alto eliminando quasi completamente la
scrittura del codice e inserendo un concetto nuovo di “sorgente”: il modello.
Per realizzare gli obiettivi sono utilizzati tre frameworks open source della pi-
attaforma Eclipse: EMF, GMF ed oAW4.
La funzionalità principale di EMF è di ricevere in input il modello di dominio
(Domain Model, il meta-modello) e di fornire come output una serie di classi

★ Parte del Progetto EU Sensoria IST-2005-016004 e del progetto PRIN 2007 D-ASAP

113

Java completamente implementate, che realizzano i vincoli, le relazioni e le asso-
ciazioni descritte nel modello di partenza. Il primo passo nel processo di sviluppo
dell’applicazione è la definizione del meta-modello, quindi l’identificazione delle
entità principali del dominio che naturalmente, parlando di statecharts, saranno
gli stati e le transizioni. Per modellare il dominio, EMF mette a disposizione
un’editor grafico con una notazione molto simile all’UML.
Il passo successivo la connessione tra EMF e GMF. Lo scopo di GMF è fa-
cilitare lo sviluppo di istanze grafiche del meta-modello, creando editor grafici
dotati di funzionalità quali drag & drop, copia/incolla, undo e redo: una classica
applicazione GMF, ad esempio, è un editor che consente di disegnare diagrammi
di vario tipo, con la possibilità di collegare tra loro le figure, ridimensionarle
e spostarle. In sostanza con GMF le entità identificate nella prima fase hanno
anche una rappresentazione grafica, dove le transizioni connettono tra loro gli
stati. Un diagramma con stati e transizioni definisce un istanza di input per
UMC.
Dalla rappresentazione grafica si può arrivare al codice testuale utilizzando
oAW4. oAW4 [6] è un framework che definisce varie funzionalità per i modelli
generati a partire da un meta-modello EMF. Sostanzialmente fornisce 3 linguag-
gi testuali che sono utili in diversi contesti: Check (.chk), per la verifica della
correttezza del modello, Xpand (.xpt), per controllare l’output del processo di
generazione ed Xtend (.ext), per definire librerie con operazioni generali, uti-
lizzabili da Check ed Xpand. Xtend viene utilizzato anche in un contesto di
trasformazione di modelli. La verifica della correttezza risulta essere un attività
molto utile nel processo di definizione del modello. In una situazione normale,
un’istanza di input, può avere un numero elevato di entità grafiche, quindi è
molto importante mantenere una certa coerenza con il modello di dominio.

2 Funzionalità

Attualmente il tool fornisce tre funzionalità:

∙ validazione dei modelli, verifica della correttezza rispetto alla definizione del
meta-modello,

∙ generazione del codice testuale dell’istanza di input per UMC,
∙ importazione e trasformazione di modelli da UML a UMC, nel paragrafo
precedente abbiamo detto che il meta-modello UMC è molto simile al meta-
modello UML per le macchine a stati. In questo caso altri tool UML (Mag-
icDraw) si possono utilizzare per definire il modello UMC.

Riferimenti bibliografici

1. Franco Mazzanti. Designing UML Models with UMC (ref. UMC V3.6 build p-April
2009), http://fmt.isti.cnr.it/umc/V3.6/umc.html.

2. Eclipse Project. http://www.eclipse.org/
3. EclipseRich Client Platform. http://wiki.eclipse.org/index.php/Rich Client Platform
4. Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/
5. Graphical Modelling Framework. http://www.eclipse.org/modeling/gmf/
6. Open Architecture Ware project. http://www.openarchitectureware.org/

114

Author Index

Bottanelli, Laura100
Brambilla, Marco5
Brondo, Diego 110
Butti, Stefano . 5

Calefato, Fabio 17, 29

De Lucia, Andrea 41
Deufemia, Vincenzo 41
Distante, Damiano 53

Fierro, Annunziato 102
Franco, Giacomo 77
Fraternali, Piero .5

Gendarmi, Domenico 17
Gorga, Ferdinando 3
Gravino, Carmine 41

Lanubile, Filippo 17, 29
Lapolla, Mariarosaria 65

Maggioni, Stefano 89
Manno, Ilaria . 102
Maresca, Paolo . 77
Mueller, Ralph . 1

Nota, Giancarlo 77

Oliva, Enrico .104

Rich, Scott . 3
Risi, Michele41, 53, 65
Rocco, Mauro . 107

Scalas, Mario . 29
Scanniello, Giuseppe53, 65
Scarfogliero, Giuseppe Marco77
Stanganelli, Lidia77, 110
Sulova, Aldi .113

Tortora, Genny 41
Tosi, Christian . 89

Vitale, Pasquale102

Zanoni, Marco . 89

