
Chapter 1

MODEL-DRIVEN SYSTEM VALIDATION BY

SCENARIOS
∗

A.CARIONI1, A.GARGANTINI2 , E.RICCOBENE1, P.SCANDURRA1

Abstract The chapter presents a method for scenario-based validation of embed-
ded system designs provided in terms of UML models. This approach
is based on model transformations from SystemC UML graphical mod-
els into Abstract State Machine (ASM) formal models, and exploits
the scenario-based model validation of the ASMs. This validation ap-
proach complements an existing model-driven design methodology for
embedded systems based on the SystemC UML profile. A validation
tool integrated into an existing model-driven co-design environment to
support the proposed scenario-based validation flow is also presented.
It allows the designer to functionally validate system components from
SystemC UML designs early at high levels of abstraction.

1. Introduction

In the Embedded System (ES) and System-on-Chip (SoC) design area,
conventional system level design flows usually start by developing a sys-
tem functional executable model from a system specification written in
natural language. It is an emerging practice to develop the functional
model and refine it with SystemC (built upon C++), which is considered
as de facto, open [22], industry-standard language for functional system-

∗This work is supported in part by the project Model-driven methodologies and techniques

for embedded system design through UML, ASMs and SystemC at STMicroelectronics.
1DIPARTIMENTO DI TECNOLOGIE DELL’INFORMAZIONE, UNIVERSITÀ DI MI-

LAN, ITALY. {CARIONI, RICCOBENE, SCANDURRA}@DTI.UNIMI.IT
2DIPARTIMENTO DI INGEGNERIA INFORMATICA E METODI MATEMATICI, UNI-

VERSITÀ DI BERGAMO, ITALY. ANGELO.GARGANTINI@UNIBG.IT

2

level models [29]. The functional executable model, as program code,
introduces design decisions which should be postponed when a commit-
ment between software applications and hardware platform has been
established, and suffers of the all the limitations of coding with respect
to modeling: less flexibility, limited reusing, unreadable documentation.
Furthermore, a system design given in terms of code is hardly trace-
able with respect to the initial specification and prevents a meaningful
analysis of the system.

The improvement of the current system level design would require
new design methods, languages and tools capable of raising the level of
abstraction to a point where productivity can be improved, errors can
be easier to identify and correct, better documentation can be provided,
and embedded system designers can collaborate more effectively. Fur-
thermore, early stages of the design process would benefit from the use
of graphical interface tools that visualize the system specification and
allow multiple team members to share the relevant information [1]. All
these reasons have, therefore, caused more and more increasing interest
toward visual software modeling languages like the UML (Unified Mod-
eling Language) [30] able to capture and visualize system structure and
behavior at multiple levels of abstraction, and to generate executable
models in C/C++/SystemC from system specifications.

Along this research line, we defined a model-driven methodology [27]
and a development process [28] for embedded system design. The new
design flow is based on the principles of high level modeling, models
transformation and automatic code generation of the Model Driven En-
gineering (MDE) approach. As modeling languages, it involves the UML
2, a SystemC UML profile (for the hardware side), and a multi-thread
C UML profile (for the software side). It allows system modeling from a
functional executable level down to the Register Transfer Level (RTL).

We here address the problem of analyzing high-level UML-based em-
bedded system descriptions, namely to find techniques for system model
validation and verification. Validation is intended as the process of inves-
tigating a model with respect to its user perceptions, in order to ensure
that the specification really reflects the user needs and statements about
the application, and to detect faults in the specification as early as pos-
sible with limited effort. Validation should precede the application of
more expensive and accurate methods, like formal verification of proper-
ties, that should be applied only when a designer has enough confidence
that requirements satisfaction is guaranteed. There exist different tech-
niques for system design validation. The scenario-based one allows the
designer to build critical scenarios reflecting given system requirements

Model-driven system validation by scenarios 3

to be guaranteed and check for requirements satisfaction. Of course, this
technique requires tools able to support automatic scenario execution.

UML-based design methods are not yet well supported by effective
validation methods, and, in general, formal model validation and ver-
ification techniques are not directly applicable to UML-based models,
due to their lack of a precise semantics. Formal methods and analysis
tools have been most often applied to low level hardware design. How-
ever, these techniques are not applicable to system descriptions given in
terms of programs of system-level languages like SystemC, since system
description are closer to software programs than to traditional hardware
description [31]. So far, the focus in the literature has been mainly on
traditional code-based simulation than on design model validation.

To tackle the problem of validating UML-based system models, we
combine our SystemC UML modeling language with the Abstract State
Machine (ASM) [6] formal notation in order to automatically map a
visual UML model into a formal ASM model, and then to exploit well
established techniques for ASM model analysis. This approach allows
us to functionally validate SystemC UML designs early at high levels of
abstraction. In particular, we here present the scenario-based validation
of embedded system designs provided as SystemC UML models. As
a proof-of-concept, the paper reports the results of the scenario-based
validation for the Simple Bus case study from the SystemC distribution.

We also present a validation tool, integrated into our model-driven
HW-SW co-design environment originally presented in [26], to support
the scenario-based validation flow. It makes use of the asmeta(ASM
mETAmodeling) toolset [4] as supporting tools around ASMs.

The choice of the ASMs among other formal methods is intentional
and due to the fact that this method (a) comes with a rigorous scientific
foundation [6], (b) provides executable specifications and, therefore, it is
suitable for high-level model validation, (c) is endowed with a metamodel
[11] defining the ASM abstract syntax in terms of an object-oriented rep-
resentation, and the metamodel availability allows automatic mapping of
SystemC UML models into ASM models by exploiting MDE techniques
of automatic model transformations [32].

A preliminary version of this work was presented in [12]. We here
provide more details on the language for scenarios modelling and the tool
components that allow transformations from visual to formal models,
and models validation.

This paper is organized as follows. Sect. 1.2 provides some back-
ground on the ASMs and their supporting toolset. Sect. 1.3 presents
our basic idea on how targeting validation in the ASM context, and
presents the language for scenarios construction. Sect. 1.4 focus on the

4

model validation flow by describing the mapping from the SystemC UML
models to ASM models and the scenario-based approach for high-level
validation of SystemC UML models. Sect. 1.5 provides some results
of the scenario-based validation of the Simple Bus case study. Sect.
1.6 quotes some relevant related work. Finally, Sect. 1.7 concludes the
paper.

2. ASMs and ASMETA

Abstract State Machines are an extension of FSMs, where unstruc-
tured control states are replaced by states with arbitrary complex data.
The states of an ASM are multi-sorted first-order structures, i.e. do-
mains of objects with functions and predicates defined on them, while
the transition relation is specified by “rules” describing the modification
of the functions from one state to the next. A complete mathemati-
cal definition of the ASM method can be found in [6]. The notion of
ASMs moves from a definition which formalizes simultaneous parallel
actions of a single agent, either in an atomic way, Basic ASMs, and in a
structured and recursive way, Structured or Turbo ASMs, to a generaliza-
tion where multiple agents interact Multi-agent ASMs. Appropriate rule
constructors also allow non-determinism and unrestricted synchronous
parallelism.

The asmeta(ASM mETAmodelling) toolset [11, 4] is a set of tools
around ASMs developed according to the model-driven development
principles. At the core of the toolset, the AsmM metamodel [4], available
in both meta-languages OMG/MOF [18] and EMF/Ecore [3], provides
a complete object-oriented representation of ASM concepts.

The asmetatoolset includes: a notation, AsmetaL, to write ASM
models conforming to the AsmM in a textual and human-comprehensible
form; a text-to-model compiler, AsmetaLc, to parse AsmetaL models
and check for their consistency w.r.t. the AsmM OCL constraints; a
simulator, AsmetaS, to execute ASM models; the AValLa language, a
domain-specific modeling language for scenario-based validation of ASM
models, with its supporting tool, the AsmetaV validator; and the ATGT

tool that is a test case generator based on the SPIN model checker [16].

3. Scenario-based validation of ASM models

Scenario-based validation of ASM models [10] requires the formaliza-
tion (complete or incomplete) of the system behavior in terms of an ASM
specification, and a scenario representing a description of external actor
actions and system reactions.

Model-driven system validation by scenarios 5

We support two kinds of external actors: the user, who has only a
black box (i.e. outside) view of the system, and the observer having,
instead, a gray box (i.e. also internal) view. By allowing two types
of actors, we are able to build scenarios useful for classical validation
(those including user actions and machine reactions), and scenarios use-
ful for testing activity (those including also observer actions) requiring
the inspection of the internal configurations of the machine. Therefore,
our scenario-based validation approach goes behind the UML use-cases
it was inspired from, and has the twofold goal of model validation and
model testing.

A user actor is able to interact, in a black box manner, with the sys-
tem by setting the values of the external environment, so asking for a
particular service, waits for a step of the machine as reaction to his/her
request, and can check the values given in outputsfrom the system. An
observer actor has the further capabilities of inspecting the internal state
of the system (i.e. values of machine functions and locations), to require
the execution of particular system (sub-)services of the machine, and to
check the validity of possible invariants of a certain scenario. We de-
scribe scenarios in an algorithmic way as interaction sequences consisting
of actions, where each action in turn is an activity of a user or observer
actor, and an activity of the machine as reaction of the actor actions.

3.1 The AValLa Language

The AValLa language has been defined in [10] as a domain-specific
modeling language in the context of scenario-based validation of ASM
models written in AsmetaL.

Fig. 1.1 shows the AValLa metamodel, which defines the language
abstract syntax in terms of an (object-oriented) model. For a formal
definition of the AValLa semantics, see [10].

An instance of the class Scenario represents a scenario of a provided
ASM specification. A scenario has an attribute name, an attribute spec

denoting the ASM specification to validate, and a list of target com-
mands of type Command . Additionally, a scenario may contain the spec-
ification of some critical properties, here referred to as scenario invari-

ants, that should always hold (and therefore checked) for the particular
scenario. The composite associations between the Scenario class (the
whole) and its component classes (the parts) Invariant and Command

assures that each part is included in at most one Scenario instance.
The abstract class Command and its concrete sub-classes provide a

classification of scenario commands. The Set command allows the user
actor to set the external environment, i.e. to supply values of monitored
or shared functions as input signals to the system. The Check class

6

Figure 1.1. The AValLa metamodel

represents commands supplied either by the user actor to inspect exter-
nal property values, or by the observer actor to further inspect internal
property values in the current state of the underlying ASM. By an Exec

command, an observer actor may require the execution of particular
ASM transition rules performing given system (sub-)services. Finally,
commands Step and StepUntil represent the reaction of the system,
which can execute one single ASM step and one ASM step iteratively
until a specified condition becomes true.

Examples of scenario scripts are provided in Sect. 1.5 for the Simple

bus case study.

4. The model-driven validation environment

The scenario-based validation environment has been developed as a
component of a more complex co-design environment [26], which allows
embedded system modeling, at different levels of abstraction, by using
the SystemC UML profile [25] and forward/reverse engineering to/from
C/C++/SystemC programming languages.

Fig. 1.2 shows the architecture of the validation component.
The scenario-based validation process starts by applying (phase 1)

the UML2AsmM transformation to the SystemC-UML model of the system
(exported from the UML modeler component of the co-design environ-
ment [26]). This automatic mapping transform the input visual model
into a corresponding ASM model written in AsmetaL.

Once the ASM model is generated, system validation (phase 2) is
possible by supplying suitable scenarios written in AValLa .

A brief description of each activity follows. Note that as required skills
and expertise the designer has to familiarise with the SystemC UML

Model-driven system validation by scenarios 7

Figure 1.2. Architecture of the validation environment

profile (embedded in the UML modeler), and with very few commands
of the AValLa textual notation to write pertinent validation scenarios.

4.1 From SystemC UML models to ASM models

SystemC UML models, provided in input from the co-design tool [26],
are transformed into corresponding ASM models (an instance of the
AsmM metamodel). This transformation is defined (once for all) by
establishing a set of semantic mapping rules between the SystemC UML
profile and the AsmM metamodel. This UML2AsmM transformation is
completely automatized by means of the ATL transformation engine [2]
developed as a possible implementation of the OMG QVT [24] standard.

In order to provide a one-to-one mapping (for both the structural and
behavioral aspects), first we had to express in terms of ASMs the Sys-
temC discrete (absolute and integer-valued) and event-based simulation
semantics. To this goal, we took inspiration from the ASM formaliza-
tion of the SystemC 2.0 simulation semantics in [20] to define a precise
and executable semantics of the SystemC UML profile and, in particu-
lar, of the SystemC scheduler and the SystemC process state machines

(an extension of the UML statecharts for modeling the behavior of the
reactive SystemC processes). We then proceeded to model in ASMs the
predefined set of interfaces, ports and primitive channels (the SystemC
layer 1), and SystemC-specific data types. The resulting SystemC-ASM
component library is available as target of the UML2AsmM transformation.

Exploiting the SystemC-ASM component library, a SystemC module
M is mapped into an ASM containing in its signature a dynamic abstract
domain M. This domain is the set of instances that can be created by
the corresponding module. Module attributes and ports of type T are
mapped into controlled ASM functions declared in the signature of the
ASM corresponding to the module. Basically, these functions have M as
domain, and T as codomain. Multiplicity and properties (like ordered,

8

unique, etc..) of attributes and ports are captured by the codomain types
of the corresponding functions. A multi-port of type T, for example, is
mapped into a controlled ASM function with codomain P(T), i.e. the
mathematical powerset of T . A hierarchical channel is treated as a
module. A primitive channel is mapped, instead, into a concrete sub-
domain of the predefined abstract domain PrimChannel, which is part
of the SystemC-ASM component library. An event is mapped into an
element of a predefined abstract domain Event.

For the behavioral part, a process (a sc thread or a sc method)
is mapped into an element of a predefined abstract domain Process.
A process behavior within a module is defined by a named, possibly
parameterized, transition rule declared within the ASM correspond-
ing to the container module. Moreover, since in the SystemC process
state machines, control structures (like if-then-else, while loop, etc.)
and process synchronization points (statements like wait, static wait,
dont initialize, etc.) are modeled in terms of stereotyped pseudo-
states (junction or choice) and states, respectively, a one-to-one mapping
is defined between the state-like diagram of the process behavior and the
basic ASM rule constructs (if-then-else rule, seq rule, etc.). Some special
ASM rule constructs, however, have been introduced in the SystemC-
ASM component library in order to capture in ASMs the semantics un-
derlying all possible forms of synchronization calls (which require dealing
with the ASM agent representing the SystemC scheduler). In particular,
the infinite loop mechanism of a thread has been modeled with a specific
design pattern of ASM rule constructors.

As example of application of such mapping, Fig. 1.3 shows the UML
notation, the SystemC code, and the resulting ASM (in AsmetaL) for a
module.

4.2 Model Validator

Scenarios written in AValLa are executed by means of the AsmetaV

validator. It is a Java application which makes use of the AsmetaS
simulator to run scenarios. AsmetaVreads a user scenario written in
AValLa (see Fig. 1.2), it builds the scenario as instance of the AValLa

metamodel by means of a parser, it transforms the scenario and the As-
metaL specification which the scenario refers to, to an executable AsmM
model. Then, AsmetaVinvokes the AsmetaS interpreter to simulate the
scenario. During simulation the user can pause the simulation and watch
the current state and value of the update set at every step, through a
watching window. During simulation, AsmetaVcaptures any check vi-
olation and if none occurs it finishes with a “PASS” verdict. Besides a
“PASS”/“FAIL” verdict, during the scenario running AsmetaVcollects

Model-driven system validation by scenarios 9

(A)

class M:
public sc module {

// an attribute of type T
T myAttr;
// a port
sc port<C> myPort;
// an operation
void myOp(..) {..}
//constructor
M(...) {...}
...

}

(B)

asm My ASM M
signature:

dynamic abstract domain M
//controlled functions
controlled myAttr: M−>T
controlled myPort: M−>C

definitions:
// named transition rules
rule r myOp(...) = ...
rule r initM($m in M,..) = ...
...

(C)

Figure 1.3. A UML module (A), its SystemC code (B) and its corresponding ASM
(C)

in a final report some information about the coverage of the original
model; this is useful to check which transition rules have been exercised.

5. The Simple Bus case study

The Simple Bus case study is a well-known transactional level exam-
ple, designed to perform also cycle-accurate simulation. It is made of
about 1200 lines of code that implement a high performance, abstract
bus model. The complete code is available at the official SystemC web
site [22].

The Simple Bus system was modelled [25] in a forward engineering
flow using the SystemC UML profile. The UML object diagram in
Fig. 1.4 shows the internal collaboration structure of the objects in-
volved in a specific configuration of the Simple Bus design: three master
blocks (a blocking master master b, a non-blocking master master nb,
and a monitor master d); two slave memories (one fast, mem fast and
one slow, mem slow); a bus connecting masters and slaves; an arbiter

with a priority-based arbitration to select a request to serve and with
bus-locking support; a clock generator C13. Every master submits read-
/write requests to the bus at regular time instants. The designer assigns
a unique priority to each master: master nb has priority 3, while mas-

ter b has priority 4. Masters can issue a request at the same time, so the
arbiter must choose one request according to some deterministic rules.

3Note that all connectors are intented as stereotyped with «sc connector».

10

In the simplest case, precedence is accorded to the device with higher
priority4, in our case the non-blocking master has priority 3 which is
higher (following a decreasing order) than the priority 4 of the blocking
master. When a master occupies the bus, an incoming request is there-
fore queued and served later in a different time instant, or served from
the next clock cycle if it has a higher priority (and the current request
will be terminated later).

Figure 1.4. Simple Bus – UML object diagram

To illustrate the typical use of the AValLa language in writing valida-
tion scenarios, below we report two scenario examples and their related
validation results for the Simple Bus design.

The first scenario shows how high level modeling tools like Asme-
taV/AValLa are helpful to abstract and stand out monitoring and de-
bugging functionality, typically embedded within the SystemC design
(in our case within the master d monitor, the arbiter, and the bus) by
inserting C++ code lines, thus further alleviating the designers’burden
of writing code. The second scenario shows instead how to validate
the fairness of the arbitration rules adopted for scheduling the masters
requests.

Scenario s1. At given time instants, the memory locations between
address 120 and address 132 are read (directReadBus). The actual
values must match the expected values.

4Two devices can not have the same priority, so the determinism is assured.

Model-driven system validation by scenarios 11

scenario s1 load Top.asm
step until time = 0 and phase = TIMED NOTIFICATION;
check directReadBus(bus, 120) = 0

and directReadBus(bus, 124) = 0
and directReadBus(bus, 128) = 0
and directReadBus(bus, 132) = 0;

step until time = 1600 and phase = TIMED NOTIFICATION;
check directReadBus(bus, 120) = 16

and directReadBus(bus, 124) = 0
and directReadBus(bus, 128) = 0
and directReadBus(bus, 132) = 0;

Scenario s2. At time 0, the master nb (with priority 3) issues a read
request (status = SIMPLE BUS REQUEST and do write = false) at ad-
dress 56 (address = 56), and the master b (with priority 4) issues a
burst read request from address 76 to 136. We assume that the clock
period is 15 time units. The bus checks the requests at each negative
clock edge. At time 15, the bus must serve the master with higher pri-
ority, i.e. the master nb, and complete it (status = SIMPLE BUS OK).
At time 30, the master nb issues a new write request at address 56. At
time 45, the bus serves again the master nb ignoring for the second time
the still pending read request of the master b.

scenario s2 load Top.asm
step until time = 0 and phase = TIMED NOTIFICATION;
check (exist $r00 in Request with priority($r00) = 3

and do write($r00) = false
and address($r00) = 56
and status($r00) = SIMPLE BUS REQUEST);

check (exist $r01 in Request with priority($r01) = 4
and do write($r01) = false
and address($r01) = 76
and end address($r01) = 136
and status($r01) = SIMPLE BUS REQUEST);

step until time = 15 and phase = TIMED NOTIFICATION;
check (exist $r02 in Request with priority($r02) = 3

and status($r02) = SIMPLE BUS OK);
step until time = 30 and phase = TIMED NOTIFICATION;
check (exist $r03 in Request with priority($r03) = 3

and do write($r03) = true
and address($r03) = 56
and status($r03) = SIMPLE BUS REQUEST);

step until time = 45 and phase = TIMED NOTIFICATION;
check (exist $r04 in Request with priority($r04) = 3

and status($r04) = SIMPLE BUS OK);

Both scenarios ended with verdict PASS and allowed a coverage of all
ASM rules of the Simple Bus model.

6. Related work

In [23], the authors present a model-driven development and valida-
tion process which begins by creating (from a natural language specifi-

12

cation of the system requirements) a functional abstract model and (still
manually) a SystemC implementation model. The abstract model is de-
scribed using the Abstract State Machine Language (AsmL) – another
implementation language for ASMs. Our methodology, instead, benefits
from the use of the UML as design entry-level and of model translators
which provide automation and ensure consistency among descriptions
in different notations (such those in SystemC and ASMs). Moreover,
these last can remain hidden to the designer, making the process com-
pletely transparent to the user who do not want to deal with them. In
[23], a designer can visually explore the actions of interest in the ASM
model using the Spec Explorer tool and generate tests. These tests
are used to drive the SystemC implementation from the ASM model
to check whether the implementation model conforms to the abstract
model (conformance testing). The test generation capability is limited
and not scalable. In order to generate tests, the internal algorithm of
Spec Explorer extracts a finite state machine from ASM models and
then use test generation techniques for FSMs. The effectiveness of their
methodology is therefore severely constrained by the limits of Spec Ex-
plorer. The authors themselves say that the main difficulty is in using
Spec Explorer and its methods for state space pruning/exploration. The
asmetaATGT tool that we want to use for the same goal exploits, in-
stead, the method of model checking to generate test sequences, and it
is based on a direct encoding of ASMs in PROMELA, the language of
the model checker SPIN [16].

The work in [14] also uses AsmL and Spec Explorer to settle a develop-
ment and verification methodology for SystemC. They focus on assertion
based verification of SystemC designs using the Property Specification
Language (PSL), and although they mention test case generation as a
possibility, the validation aspect is largely ignored. We were not able
to investigate carefully their work as their tools are unavailable. More-
over, it should be noted that approaches in [23, 14], although using the
Spec Explorer tool, do not exploit the scenario-based validation feature
of Spec Explorer. Indeed, in [13, 5] was shown how Spec Explorer allows
scenario-oriented modeling.

In [17], a model-driven methodology for development and validation
of system-level SystemC designs is presented. The development and
validation flow is entirely based on the specification of a functional model
(reference model) in the ESTEREL language, a state machine formalism,
and on the use of the ESTEREL Studio development environment for
the purpose of test generation. The proposed approach concentrates on
providing coverage-directed test suite generation for system level design
validation.

Model-driven system validation by scenarios 13

Authors in [7] provide test case generation by performing static analy-

sis on SystemC designs. This approach is limited by the strength of the
static analysis tools, and the lack of flexibility in describing the reachable
states of interest for directed test generation. Moreover, static analysis
requires sophisticated syntactic analysis and the construction of a se-
mantic model, which for a language like SystemC (built on C++) is
difficult due to the lack of formal semantics.

The SystemC Verification Library [22] provides API for transaction-
based verification, constrained and weighted randomization, exception
handling, and HDL-connection. We aim, however, at developing formal
techniques to augment SystemC verification.

The Message Sequence Chart (MSC) notation [19], originally devel-
oped for telecommunication systems, can be adapted to embedded sys-
tems to allow validation. For instance, in [9] MSC is adopted to visualize
the simulation of SystemC models. The traces are only displayed and
not validated, and the author report the difficulties of adopting a graph-
ical notation like MSC. Our approach is similar to that presented in
[15], where the MSCs are validated against the SDL model, from which
a SystemC implementation is derived. MSCs are also generated by the
SDL model and replayed to cross validation and regression testing.

7. Conclusions and future work

We proposed a scenario-based validation approach to system-level de-
sign by the use of the SystemC UML profile (for the modeling part) and
the ASM formal method and its related asmetatoolset (for the valida-
tion part). We have been testing our validation technique on case studies
taken from the standard SystemC distribution, like the Simple Bus pre-
sented here, and on some of industrial interest. Thanks to the ease in
raising the abstraction level using ASMs, we believe our approach scales
effectively to industrial systems.

This work is part of our ongoing effort to enact design flows that start
with system descriptions using UML-notations and produce C/C++/Sy-
stemC implementations of the SW and HW components as well as their
communication interfaces, and that are complemented by formal analysis

flows for system validation and verification.
As future step, we plan to integrate AsmetaVwith the ATGT tool of

the asmetatoolset to be able to automatically generate some scenarios
by using ATGT and ask for a certain type of coverage (rule coverage,
fault detection, etc.). Test cases generated by ATGT and the validation
scenarios can be transformed in concrete SystemC test cases to test the
conformance of the implementations with respect to their specification.
Moreover, we plan to support system properties formal verification by

14

model checking techniques. This requires transforming ASM models
into models in the language of the model checkers, such as the Promela
language of the SPIN model checker.

References

[1] Chen, R., Sgroi, M., Martin, G., Lavagno, L., Sangiovanni-Vincentelli, A.L.,
Rabaey, J. Embedded System Design Using UML and Platforms. In System Spec-
ification and Design Languages (Eugenio Villar and Jean Mermet, eds.). CHDL
Series, Kluwer, 2003.

[2] The ATL language. www.eclipse.org/m2m/atl/.

[3] Eclipse Modeling Framework. www.eclipse.org/emf/.

[4] The ASMETA toolset. http://asmeta.sf.net/, 2006.

[5] M. Barnett et al. Validating use-cases with the AsmL test tool. In QSIC Int.
Conference on Quality Software, p. 238–246. IEEE, 2003.

[6] E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

[7] F. Bruschi, F. Ferrandi, and D. Sciuto. A framework for the functional verification
of SystemC models. Int. J. Parallel Program., 33(6):667–695, 2005.

[8] A. Gargantini, E. Riccobene, and P. Scandurra. A metamodel-based simulator
for ASMs. In Proc. of the 14th Int. ASM Workshop, 2007.

[9] T. Kogel. et al. Virtual Architecture Mapping: A SystemC based Methodology
for Architectural Exploration of System-on-Chip Designs. In A. D. Pimentel and
S. Vassiliadis (Eds.), Computer Systems: Architectures, Modeling, and Simulation.
SAMOS, LNCS 3133, p. 138–148, Springer-Verlag, 2004.

[10] A. Gargantini, E. Riccobene, and P. Scandurra. A scenario-based validation
language for ASMs. In ABZ’ 08: Proc. of the 1st International Conference on
Abstract State Machine, B and Z. LNCS 5238, p. 71–84, Springer, 2008.

[11] A. Gargantini, E. Riccobene, and P. Scandurra. A Language and a Simulation
Engine for Abstract State Machines based on Metamodelling. In Journal of
Universal Computer Science , Vol. 14, No. 12, p.1949-1983, 2008.

[12] A. Gargantini, E. Riccobene, P. Scandurra, A. Carioni. Scenario-based validation
of Embedded Systems. In FDL’ 08: Proc. of Forum on Specification and Design
Languages, pp. 191-196. IEEE press, 2008.

[13] W. Grieskamp, N. Tillmann, and M. Veanes. Instrumenting scenarios in a
model-driven development environment. Information & Software Technology,
46(15):1027–1036, 2004.

[14] A. Habibi and S. Tahar. Design and verification of SystemC transaction-level
models. IEEE Transactions on VLSI Systems, 14:57–68, 2006.

REFERENCES 15

[15] M. Haroud et al. HW accelerated ultra wide band MAC protocol using SDL and
SystemC. In IEEE Radio and Wireless Conference, p. 525–528, 2004.

[16] G. J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–
295, 1997.

[17] D. Mathaikutty, S. Ahuja, A. Dingankar, and S. Shukla. Model-driven test gen-
eration for system level validation. In HLVDT’07: High Level Design Validation
and Test Workshop, p. 83–90, 2007. IEEE.

[18] OMG. The Meta Object Facility, formal/2002-04-03.

[19] Message Sequence Charts (MSC) ITU-T. Z.120, 1999.

[20] W. Müller, J. Ruf, and W. Rosenstiel. SystemC Methodologies and Applications.
Kluwer Academic Publishers, 2003.

[21] The Object Managment Group (OMG). www.omg.org.

[22] Open SystemC Initiative. http://www.systemc.org.

[23] H. D. Patel and S. K. Shukla. Model-driven validation of SystemC designs. In
DAC’07: Proc. of the 44th Design Automation Conference, p. 29–34, New York,
2007. ACM.

[24] OMG, Query/Views/Transformations, ptc/07-07-07.

[25] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A UML2 Profile for
SystemC 2.1. STMicroelectronics Technical Report, April 2007.

[26] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A model-driven design
environment for embedded systems. In DAC’06: Proc. of the 43rd Design Au-
tomation Conference, p. 915–918, New York, 2006. ACM.

[27] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A Model-driven co-design
flow for Embedded Systems. Advances in Design and Specification Languages for
Embedded Systems (Best of FDL’06), 2007.

[28] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. Designing a unified process
for embedded systems. In Fourth Int. workshop on Model-based Methodologies for
Pervasive and Embedded Software. IEEE Press, 2007.

[29] T. Gröetker and S. Liao and G. Martin and S. Swan. System Design with Sys-
temC. Kluwer, 2002.

[30] OMG. The Unified Modeling Language. www.uml.org.

[31] M. Y. Vardi. Formal Techniques for SystemC Verification; Position Paper. In
DAC’07: Proc. of the 44rd Design Automation Conference, p. 188–192. IEEE,
2007.

[32] Zhang, T., Jouault, F., Bézivin, J., Zhao, J. A MDE Based Approach for Bridging
Formal Models. In Proc. 2nd IFIP/IEEE International Symposium on Theoretical
Aspects of Software Engineering. IEEE Computer Society, 2008.

