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Abstract
In the modelization of time-dependent systems it is often useful to use

the abstraction of zero-time transitions, i.e., changes of system state that
occur in a time that can be neglected with respect to the whole dynamics of
system evolution. Such an abstraction, however, sometimes generates
critical situations in the formal system analysis. This may lead to
limitations or unnatural use of such formal analysis. In this paper we
present an approach that keeps the intuitive appealing of the zero-time
transition abstraction yet maintaining simplicity and generality in its use.
The approach is based on considering zero-time transitions as occurring in
an infinitesimal, yet non-null time. The adopted notation is borrowed from
non-standard analysis. The approach is illustrated through Petri nets as a
case of state machines and TRIO as a case of logic-based assertion
language, but it can be easily applied to any formal system dealing with
states, time, and transitions.

Introduction
Several formalisms have been proposed recently for the modelization

and analysis of time-critical systems. In many cases systems to be
analyzed are described by some abstract machine and their properties are
formalized through suitable formulas. Abstract machines are
characterized by some notion of state and by transitions from one state to
another. In such formalizations it is often useful to adopt the abstraction
of zero-time transitions, i.e., transitions whose duration is so short that it
can be neglected w.r.t. the whole system evolution.

Allowing transitions to occur in zero-time is certainly intuitively
appealing; it exposes however to some risks in mathematical
formalization. The main problem arises from the fact that it is quite
natural to describe system state evolution by formalizing its state as a
total function of the time variable: s(t) denotes system’s state at time t. By
this way, the effect of a transition tr is described as a state transformation
that leads system’s state from s1 at time t1 (at the beginning of the
transition) to s2 at time t2 (at the end of the transition). If we allow tr to
have a null duration, however, we obtain that t1 = t2 and, therefore, at t1
the system is both in state s1 and in state s2: such a claim contradicts the
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intuitive assertion that at a given instant the system is in exactly one
state. It also exposes to the risk of formal contradictions if, e.g., one
describes system state as the property that some node is marked or not.

To overcome this difficulty several approaches have been followed in the
literature:
• In ASTRAL [CGK97] zero-time transitions are simply excluded.
• At the other extreme, in Esterel [B&C84] all transitions are assumed to

take zero time. This is due to the typically synchronous approach on
which Esterel is based: the abstraction provided by the model assumes
that a whole time unit elapses and that at its end a finite sequence of
state transitions occurs. As with all synchronous abstract machines
time is intrinsically a discrete set1.

• In [H&L96], instead, time must be a dense set. System evolution is
described as an alternating sequence of trajectories and actions. A
trajectory corresponds to a time interval where the state is constant or
changes continuously with time; actions are instantaneous transitions
that change the system state. Thus, the system state is a piecewise
constant or continuous function of time.

• In other cases [Ost89], [B&D91], [Cer93] time is modeled as a particular
system variable and its value is explicitly updated by special transitions
(e.g. tick in [Ost89], which imposes a discrete time domain) which are
interleaved with other state transformations. This approach sometimes
imposes rather unnatural formalizations of system properties, and
makes their proof much longer and unintuitive. For instance, it could
happen that in system description two states s1 and s2 have the same
value for the “time variable”, which prevents the classical, simple
modeling of system state as a function of time, and hinders the use of
familiar locutions such as “the system state at time t”. Also, in the case
of discrete time domains, the unexperienced user must be emphatically
warned that “the next value of system variable v” is not necessarily “the
value at time t+1”.

• In [FMM94] we provided an axiomatization of timed Petri nets which
allows zero-time transitions. In the general case, however, such an
axiom system must deal with the possibility of several firings of the
same transition in the same instant: this imposes a fairly cumbersome
notation and requires a convention to define a single state (marking) of
the net at a time t when several transitions fire simultaneously. In
[S&S96] the authors show that problems arise even when modeling
time in Petri nets by means of token time stamps: in presence of
instantaneous events, they propose to add to time stamps an index

                                           
1A typical application of this model is the synthesis of hardware circuits. Not

surprisingly their design is based on a synchronous model where combinatorial gates
(and, or, not, ...) are modeled as zero-time transitions: obviously, it is the designer
responsibility to verify that, in practice, all switchings corresponding to combinatorial
evaluation occur within a single machine cycle so that the zero-time abstraction is correct.
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denoting the order of production of simultaneously generated tokens.
This solution is similar to that proposed in [FMM94] and shares the
same weaknesses in terms of naturalness and generality.
To summarize, all approaches proposed so far had to pay a price either

in terms of generality, or in terms of naturalness in the expression and
proof of system properties, or in terms of heaviness of the mathematical
notation.

In this paper we present a novel approach which conjugates intuition
with mathematical rigor and generality. Going back to the original
intuitive meaning of zero-time transitions we consider such transitions as
occurring in an infinitesimal – yet non-null – time; in the traditional
continuous mathematics terminology “a zero-time transition actually takes
a non-null time whose measure is smaller than any finite positive
number”.

We fully formalize this approach within the framework of non-standard
analysis [Rob61, Rob96], which provides a simple and intuitive notation to
formalize infinitesimal calculus. We instantiate our approach with
reference to timed Petri nets and to the logic language TRIO which we are
using for our research in the field of real-time systems [FMM94]. We will
show, however, that our approach is absolutely general and can be applied
as well to any other abstract machine and assertion language.
Furthermore, despite the fact that we deal with infinitesimal numbers,
our approach can be applied both to dense and to discrete time domains.

The paper is organized as follows. Section 2 provides a short summary
of non-standard analysis; Section 3 provides an axiom system for timed
Petri nets based on a minimal subset of the TRIO language and assuming
a time domain augmented with infinitesimal numbers. Section 4 provides
a few examples of property proofs in the new axiomatization and shows
that these new proofs are considerably simpler than those derived with
previous approaches. Finally, Section 5 contains a few concluding remarks.

For the sake of shortness we limit ourselves to the essential aspects of
the proposed approach; the skipped details, however, can be easily filled
out.

2. A summary of non-standard analysis
In this section we introduce the main concepts of the modern theory of

infinitesimals founded by A. Robinson [Rob61, Rob96], the non-standard
analysis (NSA in brief). We provide only the minimum background that is
needed to explain our application of this theory.

The main idea that facilitates practical application of NSA is due to E.
Nelson [Nel77]; he defined a theory, called Internal Set Theory (IST),
which includes a typical axiomatization of arithmetics (say, ZFC, the
Zermelo-Fraenkel set theory with the axiom of Choice [Coh66]) and
extends it through the predicate standard (briefly st), which is left
deliberately undefined, plus three additional axiom schemes. Thanks to
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the new st predicate introduced by IST, we can say whether a number (of
the usual numeric sets such as the reals RR and the naturals NN) is either
standard or not. Every concrete number one could write or a computer
could generate is standard. Thus numbers such as 1, π, 1/100, are
standard.

The predicate standard is used to introduce the concept of infinitesimal
in R in the following way: x  is infinitesimal if x≥0 and x is smaller than
any positive standard number (smaller then any number we can write or
calculate). 0 is infinitesimal; in fact, it is the only infinitesimal standard
number. Close to 0 there are the non standard infinitesimal numbers
(infinitesimal and greater than zero). They are not the only non standard
numbers. R includes many other non standard numbers, that are the
result of adding and subtracting infinitesimal amounts to standard
numbers. There are also unlimited non standard numbers, i.e., the
inverses of infinitesimal non standard numbers, greater than every
standard number.

Now we formalize the above concepts in R through first order predicate
formulas, where ∀stx A(x) is an abbreviation for ∀x ( st(x) → A(x)):

infinitesimal(ε)  is defined as ∀st x (x>0 → |ε| ≤ x)
nsinfinitesimal(ε)  is defined as ∀st x (x>0 → |ε| ≤ x) ∧ ¬st(ε)
infinitesimal+(ε)  is defined as ∀st x (x>0 → 0<ε≤x) ∧ ¬st(ε)
Formulas in which the predicate st does not occur are called internal

formulas. whereas formulas using the standard predicate are external. The
definitions given above are all external formulas, while formulas of
classical arithmetic are internal. Given an internal sentence (a formula
with no free variables) A, the relativization of A to the standard sets,
denoted as Ast, is obtained from A by restricting all quantifications to
standard values (i.e., by substituting every occurrence of ∀x by ∀stx). A
fundamental metatheorem of IST (hereinafter called the Transfer
Theorem) asserts that Ast↔A; hence all theorems of conventional
mathematics also hold in IST when relativized to the standard sets, and,
conversely, to prove an internal theorem it suffices to prove its
relativization to the standard sets. Another fundamental result of IST
ensures that it is a conservative extension of ZFC, that is, every internal
sentence that can be proved in IST can also be proved in ZFC.

The results of the usual operations (*, +, -, and /) between standard and
non standard numbers are driven by the so called Leibniz rules [D&D95].
The following tables express some of these rules using the symbol Ø for an
infinitesimal, £ for a limited number (i.e., a number that is not larger than
any standard number).

+ Ø £ × Ø £

£ £ £ £ Ø £
Ø Ø Ø Ø
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From these tables we can derive the intuitive rules: “The sum of two
infinitesimal numbers is a infinitesimal number, the product of a limited
number by an infinitesimal number is infinitesimal, etc ....”

Here we do not express in our axiom system these rules (as well as
operations between standard numbers) and assume other useful properties
from the IST theory (e.g. there exists in R and in N an infinitesimal
number, ...)

3. A non-standard axiom system for timed Petri nets
In this section we provide an axiom system for timed Petri nets (TPN).

We refer to the Merlin and Farber model [M&F76], which is one of the
most widely known versions of such nets. Informally, a TPN differs from a
traditional PN in that each transition is labeled by a pair <lb, ub>: once
enabled the transition cannot fire before lb time units and must fire within
ub, unless disabled in the meanwhile. The axiom system is expressed in
terms of the TRIO language which essentially is a predicate calculus
augmented with a unique temporal operator Dist: Dist (F, t) means that
formula F holds at a time instant whose distance is exactly t time units
from the current time (that is, informally, from the time when Dist (F, t) is
claimed). Several derived operators are defined to make formulas shorter
and more readable: in this paper we will use:

• Futr(F, t)  =
def  t ≥ 0 ∧ Dist(F, t)

• Past(F, t)  =
def  t ≥ 0 ∧ Dist(F, -t)

• Alw(F)  =
def  ∀t Dist(F, t)

• WithinF(F, t)  =
def  ∃d (d≤t ∧ Futr(F, t))

A complete and rigorous treatment of Merlin and Farber model
semantics and a summary of the TRIO language can be found in [FMM91].

It will appear, however, that the method illustrated here can be applied
as well to any formalism that is based on the notions of state and
transition (Finite or infinite state machines) and to several logic-based
assertion languages that allow dealing with time issues (e.g., [CGK97],
[Koy89], [Ost89]).

Let us first define a suitable time domain T enriched with non-standard

numbers and let us denote the augmented domain as T̂. For simplicity let
us assume that the original time domain is a subset of the set of real
numbers R. For instance, we could take as time domain T the set of

integers: thus T̂ would be the set of integers augmented with the non-
standard numbers that are infinitely close to an integer number. Figure 1

suggests an intuitive graphical representation of such a set. In general, T̂
can be visualized by surrounding each standard real element of T by a
“cloud” of nonstandard reals that differ from it by an infinitesimal number.
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0 1 2

Figure 1. An intuitive display of integer numbers augmented with non-standard
neighbors.

Next we introduce the following basic predicates describing TPN
behavior:
• fire(v)  means that the transition v fires now, i.e., at the current instant.
• tokenF (v, w, d) means that transition v fires now and the token

produced by its firing will be consumed by transition w, d time units in
the future. Symmetrically, the tokenP predicate is defined by

tokenP(v, w, d) ↔ Past (tokenF (v, w, d), d).
The above predicates are the same as we used in [FMM94]. Notice

however, that in [FMM94] they were the result of a simplification from
[FMM91] exploiting the restriction to 1-bounded nets. This restriction
--together with other minor assumptions-- guaranteed a priori that no
transition could fire twice in the same instant. Dealing with the general
case required more complex predicates (with more arguments) and axioms
(see Example 1 and the Appendix).

Also, we keep here a minor simplification that excludes that the same
pair of transitions has more than one place in the intersection between
pre- and post-sets. This assumption does not cause any loss of generality
and only allows some simplification in the notation.

The essential features of our approach are the following:
1. There are no firings occurring exactly in null time: in general, if a

lowerbound, upperbound pair <mv, Mv> is associated with a transition
v, we will assume that v's firing may occur at a time distance t since its
enabling with mv+ε1 < t < Mv+ε2, ε1, ε2 being two positive infinitesimal
numbers.

2. No transition can fire more than once exactly at the same instant; it
can, however, fire at two instants whose distance is infinitesimal.

3. There is exactly one system state associated to every instant (having a
standard numerical value or not) of the time domain.
We are now ready to give axioms formalizing the behavior of TPNs.

Following the same schema as [FMM94] we consider transitions of the
types given in Figure 2:

v u

w

r

s

p q

[mv Mv]

[mu Mu]

[mw Mw]

Figure 2. A fragment of timed Petri net
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We augment both the lower and the upper bound of every transition by
an infinitesimal positive constant amount. This choice allows us to treat in
the same manner zero-time transitions, transitions with lowerbound equal
to the upperbound, and any other transition with
upperbound > lowerbound. Thus the only requirement about mv and Mv is
0≤mv≤Mv.

For the fragment of Figure 2 the axiom related to v's lowerbound is
LB(v) fire(v) → ∃d (d>mv ∧ (tokenP(r,v,d) ∨ tokenP(s,v,d))

which means that if v fires it consumes a token produced by r or s strictly
more than mv time units ago. If mv=0 this axiom excludes a –strictly–
zero-time firing.

The axiom related to v’s upperbound is:

UB(v) ( fire(r) →  ∃d( d ≤ Mv + ε ∧ tokenF(r,v,d)) )
∧

( fire(s) →  ∃d( d ≤ Mv + ε ∧ tokenF(s,v,d)) )
where ε is a positive infinitesimal number. This is a short notation  for:

 ∃e ( infinitesimal+(e) ∧ 

( fire(r) →  ∃d( d ≤ Mv + e ∧ tokenF(r,v,d)) ) ∧

( fire(s) →  ∃d( d ≤ Mv + e ∧ tokenF(s,v,d)) )   )
Notice that the above axioms are the same as [FMM94] with the only

addition of infinitesimal numbers.
The UB axiom is slightly more complex when two transitions compete to

consume a token from a single place, as do transitions u and w in Figure 2.
Let M be the least of the upperbounds of u and w, i.e., M =

def  min(Mu, Mw).
The axiomatization of UB imposes the firing of either u or w within M
time units after v.

UB(u), UB(w): fire(v) → ∃d(d≤M+ε ∧ (toeknF(v, u, d) ∨ tokenF(v, w, d)))
Finally we add an axiom stating token unicity:
IU(v): tokenP(x, v, d) ∧ tokenP(y, v, e) → x=y ∧ d=e
OU(v): tokenF(v, x, d) ∧ tokenF(v, y, e) → x=y ∧ d=e

(with x and y variables ranging on the set of transitions).
As a result we obtained an axiom system for TPNs with the same

simplicity as for 1-bounded TPNs which applies however to general TPNs.
The examples given in the next section show the usefulness of the new

axiomatization w.r.t. other approaches.



September 18, 1998 8

4. Proving system properties through the non-
standard axiom system

In this section we provide a few examples of use of the new axiom
system to prove system properties. Comparisons with previous approaches
show how the proposed method joins naturalness with generality.
Example 1

We show that having increased by an infinitesimal quantity the
lowerbound of a transition does not alter  the order of firings.

Let us consider the net fragment in Figure 3.

s [0,0]
v [x,y]

r 

Figure 3. Two transitions in mutual exclusion.

where x is any standard positive real number and y any real number ≥x.

Then the following property holds
Alw (¬ fire(v)) (‡)

i.e., despite the (infinitesimal) increase in the upperbound of s, transition v
will never fire.

This property was illustrated and proved in [FMM91], using a different
axiomatization: there we could not avoid simultaneous transition firings,
hence both the formalization of the behavior of the net and, as a
consequence, the proof the property were much less intuitive and
transparent. We were compelled to use the predicate fireth(v, i) to state
that transition v fires for the i-th time at the current instant, and therefore
we formalized the property as Alw(¬ ∃i fireth(v, i)). Similarly, in that
axiomatization tokenP(r,j, v,i, d) would mean that transition r fires now (at
the current instant) for the j-th time and the token produced by this firing
will be consumed after d time units by the i-th firing of transition v. We
report the proof based on the axiomatization of [FMM91] in the Appendix,
and invite the reader to compare it with the new proof we display next.
The latter is much more terse, though similar in structure, thanks to the
use of simpler predicates and the absence of quantifications over the
number of simultaneous transition firings.

Proof of (‡).
Axiom UB for transition s is:

UB(s): fire(r) → ∃d (d ≤ ε ∧ ( tokenF(r, s, d) ∨ tokenF(r, v, d) )  )
Let us assume, by contradiction, that transition v fires. Then, we can

construct the following derivation.
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1. fire(v) Hyp

2. ∃d(d>x ∧ tokenP(r, v, d)) 1, LB(v): Lower Bound axiom of v

3. D>x ∧ tokenP(r, v, D) 2, EI: Existential Instantiation: D for d

4. D>x ∧ Past(tokenF(r, v, D), D) 3, def: tokenP(x,y,d) =Past(tokenF(x,y,d),d)

5. D>x ∧ Past(fire(r), D) 4, def: tokenF(r,v,d) → fire(r)

6. D>x ∧ Past(∃e(e ≤ ε ∧

              (tokenF(r, s, e) ∨ tokenF(r, v, e)))), D)

5, UB(s) Upper Bound axiom for  s

7. D>x ∧ ∃e(e ≤ ε ∧ Past(tokenF(r, s, e) ∨

tokenF(r, v, e), D) )

6, th: Past(∃x A(x),d ) = ∃x Past(A(x),d)

8. ∃e( D>x ∧ e ≤ ε ∧ Past( (tokenF(r, s, e) ∨

tokenF(r, v, e) ) ∧ tokenF(r, v, D), D) )

7,4 AI And Introduction

9. (tokenF(r, s, e) ∨ tokenF(r, v, e)) ∧

                                     tokenF(r, v, D)  → D=e

OU(r) Output Unicity for r

10. ∃e(D> x ∧ e ≤ ε ∧ Past(D = e ,D)) 8,9, MP

11 ∃e(D> x ∧ e ≤ ε ∧ D = e ) 10, th: Past(A,x)→ A, if A is time independent

12. ∃e( x< e ≤ ε ) 11, AE And Elimination

Proposition 12 is false, since x is a positive standard real number,  while
ε is less than any positive standard. By contradiction, the initial
assumption is therefore false. ■

Example 2
Consider the net fragment given in the Figure 4. We want to prove that

(•) fire(s) → WithinF (fire(v2), 10)

v2 [0,0]s v1 [10,10]

Figure 4. Two transitions firing at the same time.

In this case it is immediate to realize that (•) cannot be derived as a
theorem in our non-standard system. In fact the axioms UB given in
Section 3 formalize the fact that, once s fires, v2 will fire in a right
neighborhood of the instant at 10 time units after the firing of s, whereas
(•) requires a firing of v2 within exactly 10 time units. In such cases, the
user has the responsibility to state precisely whether timing properties to
be proved must hold exactly or up to an infinitesimal approximation.

In this case, for instance, the “right” formula to be proved should be
(••) fire(s) → WithinF(fire(v), 10+ε)
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where, for ease of reading, we use the short notation WithinF(fire(v), 10+ε)
as an abbreviation for ∃e (WithinF(fire(v), 10 + e) ∧ infinitesimal+(e)).

Once it is understood that the wished property of the net of Figure 4 is
(••) rather than (•), its proof with the new axiom system becomes a trivial
exercise by exploiting the fact that the sum of two infinitesimals is
infinitesimal.
Example 3

v2 [0,0] v1 [10,10]

Figure 5. A transition loop.

Consider the net fragment given in the Figure 5. It is interesting to note
that the following property can be easily proved through a simple
induction

(•) fire(v1) → ∀st k (Futr(fire(v2), k⋅10+ε)).
Proof of (•)
From

1. fire(v2) → Futr(fire(v1), 10 + ε1) and
2. fire(v1) → Futr(fire(v2),  ε2)

we find:
fire(v2) → Futr(fire(v2),  10 + ε1 +  ε2)

from which we derive
fire(v2) → Futr(fire(v2), n⋅10 +n⋅ ε1+n⋅ ε2)

from which the thesis follows (since n is standard and by Leibniz rules),
taking ε=n⋅ ε1+n⋅ ε2. ■

Notice that the order of quantifications is intended as

∃e ∀stn (infinitesimal+(e) ∧ (fire(v2) → Futr(fire(v2), n⋅10 + e)) ).
From this we derive, thanks to basic properties of predicate calculus,

∀stn ∃e (infinitesimal+(e) ∧ (fire(v2) → Futr(fire(v2), n⋅10 +e)) ).
Then the Transfer theorem of IST allows us to derive

∀n ∃e (infinitesimal+(e) ∧ (fire(v2) → Futr(fire(v2), n⋅10 + e)) ),
whereas the formula with the other quantifier alternation, ∃e∀n(...), does
not hold. This remark perfectly matches the intuition that, if we want to
execute the loop of Figure 5 “an extremely large number of times” keeping
the firing times “close to multiples of 10” we can always find a sufficiently
short firing time for the single transition firings to fulfill the requirement;
this property, however, does not generalize to “an infinite number of
times”.
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5. Conclusions
We have presented a new axiomatic approach that allows dealing with

zero-time transitions in a way that is both intuitive and general. The
approach is based on considering exact time bounds that are associated
with transition firings as approximations of time measures up to
infinitesimal numbers. As a consequence the user must apply some care in
specifying system properties by clearly distinguishing whether some time
values are exact or approximated numbers (in most practical cases it will
turn out that we are dealing with approximate quantities).

Our short experience with the use of TRIO in a non-standard
framework shows that extending the approach from the very basics
presented in this paper to the complete language (dealing with several
derived operators, with large specifications and more complex proofs, ...)
can proceed quite smoothly.

The approach has been formalized for timed Petri nets and the TRIO
logic language but it can be applied as well to any abstract machine and
logic assertion language.

For instance, our approach can provide a sound and complete
explanation of the “arbitrary small constant β” that is introduced in
[H&L96] as a “technicality to take into account of possible critical races”: a
close inspection shows that such a constant is but an infinitesimal positive
quantity.

Furthermore, in those approaches, such as [B&D91], [Cer93], and
[Ost89], where time is formalized as a state variable updated by special
“tick” transitions, time flow could be made implicit, as it is in traditional
dynamic system theory, by associating a positive, possibly infinitesimal
duration to every “normal” (non-tick) transition. This would permit the
unification of the above approaches with other ones, such as [CGK97],
where time advances independently but a non-zero duration is associated
with every transition.
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Appendix
Proof of the property (‡) of Example 1 using the axiom system of

[FMM91].

s [0,0]
v [x,y]

r 

In this case the property is expressed as
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(•) Alw (¬∃i fireth(v,i))
Next, we prove (•) by contradiction. By using suitable tautologies and

generalization arguments, it suffices to prove that  ¬∃i fireth(v,i).

1. fireth(v,i) Hyp

2. ∃d(d≥x ∧ ∃j  tokenP(r, j, v, i, d) ) 1, LB(v): Lower Bound axiom for v

3. D≥x ∧ tokenP(r, J, v, i, D) 2, EI: Existential Instantiation: D for d, J for j

4. D≥x ∧ Past(tokenF(r, J, v, i, D), D) 3, def: tokenP(...,d) = Past(tokenF(.., d), d)

5. D≥x ∧ Past(fireth(r, J), D) 4, def: tokenF(r, J, v, i, D) → fireth(r, J)

6. D≥x ∧ Past(∃e(e≤0 ∧ ∃k(tokenF(r, J, s, k, e) ∧

                                   tokenF(r, J, v, k, e) ), D)

5, UB(s): Upper Bound axiom for  s

7. ∃e(D≥x ∧ e≤0 ∧ ∃k Past(tokenF(r, J, s, k, e) ∧

                                          tokenF(r, J, v, k, e), D)

6, th: Past(∃x A(x),d ) = ∃x Past(A(x),d)

8. ∃e(D≥x ∧ e≤0 ∧ 

∃k Past((tokenF(r,J,s,k,e) ∨  tokenF(r,J, v,k,e))

                ∧ tokenF(r,J, v,i,d), D) )

7,4 AI And Introduction

9. (tokenF(r, J, s, k, e) ∧ tokenF(r, J, v, k, e)) ∧

tokenF(r, J, v, i, d ) → d=e ∧ k=i

OU(r): Output Unicity  for r

10. ∃e (D≥x ∧ Past((e≤0 ∧ k=i ∧ D=e)), D) 8, 9, MP

11. ∃e (D≥x ∧ Past(e≤0 ∧ D=e), D) ) 10, AE: And Elimination

12. ∃e (D≥x ∧ e≤0 ∧ D=e) 11, th: Past(A,x) → A, if A time independent

13.  ∃e ( x ≤ e ≤ 0 ) 11, prop

14. ¬ fireth(v,i) 12, by contradiction, since 13 is false


