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Kripke structures with inputs
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 A Kripke structure with inputs is a 6-tuple 

M = 𝑆, 𝑆0, 𝐼𝑁, 𝑂𝑈𝑇, 𝑇, 𝐿

 𝑆 is a set of states; 𝑆0⊆ 𝑆 is the set of initial states;

 𝐼𝑁 and 𝑂𝑈𝑇 are disjoint sets of atomic propositions;

 𝑇 ⊆ 𝑆 × 𝒫(𝐼𝑁) × 𝑆 is the transition relation; 

 given a state 𝑠 and the applied inputs 𝐼, the structure moves to a state 𝑠′, 
such that (𝑠, 𝐼, 𝑠’) ∈ 𝑇.

 𝐿: 𝑆 → 𝒫(𝑂𝑈𝑇) is the proposition labeling function.

 The set of atomic propositions is 𝐴𝑃 = 𝐼𝑁 ∪ 𝑂𝑈𝑇 and CTL/LTL 
formulae are defined over 𝐴𝑃

 Kripke structure with inputs differ from classical Kripke structures because 
the inputs are not part of the state and cannot be modified by M (but they are 
equivalent)



Kripke structures with inputs
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 Input sequence:  𝐼0, ⋯ , 𝐼𝑛, ⋯ with 𝐼𝑘 ∈ 𝒫(𝐼𝑁)

 Trace:       

such that  

 𝑠0 ∈ 𝑆
0 and 

 (𝑠𝑖 , 𝐼𝑖 , 𝑠𝑖+1) ∈ 𝑇

 Test:  a test is a finite trace

IN OUT

s s’

I

(s,I,s’) ∈ T

𝑠0
𝐼0 𝑠1

𝐼1 𝑠𝑖
𝐼𝑖 𝑠𝑖+1𝑠2



Test generation by model checking
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 Test predicate:  A test predicate is a formula over the 

model, and determines if a particular testing goal is 

reached.

 Example: 

 Conditional statement

if C then …

 If one wants to cover a case in which C is true 

 LTL test predicate: F(C)



MC for test generation

SPECIFICATION

Test 

predicates

Model 

checker

Counter 

example
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never(tp) 
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covers tp

= test
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Criteria

Test + coverage 

info

Test suite
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Test generation by model checking

 Model checking for model-based tests generation is a well 

established research technique

 [FAW09] reviewed 140 papers

 [GH99] and [ABM98] have around 400 citations

 several notations, systems, coverage criteria (data flow, structural, 

mutation, …) and using several model checkers

 [FAW09] Fraser,  Ammann, and Wotawa.  Testing with Model Checkers:  A Survey.  

Journal for Software Testing, Verification and Reliability, 2009

 [GH99] Gargantini,  Heitmeyer.  Using model checking to generate tests from 

requirements specifications.  FSE/ESEC, 1999

 [ABM98]  Ammann,  Black,  Majurski.  Using model checking to generate tests from 

specifications. Formal Engineering Methods, 1998

 Several commercial tools are based on model checking 

techniques (like mathworks)

24/7/2014 TAP7 Gargantini - An Abstraction Technique for Testing Decomposable Systems



Some limits

1. Trap property proved false

Cex found

2. Trap property proved true

Test predicate infeasible

3. MC does neither complete the 

proof nor finds the counter 

example

 Out of memory (state explosion 

problem)

Model 

checker

Trap 

property

never(tp) 
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Main problem: scalability

 Model checker (symbolically) explores the entire state 

space

 It suffers from the state explosion problem

 A combinatorial blow up of the state-space

 It limits its usability 

 Are there particular classes of systems which can be 

abstracted for test generation?

 Sequential nets of abstract state machines, ABZ 2012

 with information passing, Science of Computer Programming, 

2014

 Running in parallel?

24/7/2014 TAP9 Gargantini - An Abstraction Technique for Testing Decomposable Systems



DDAP systems
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 Decomposable by Dependency Asynchronous Parallel 

systems (DDAP) systems. 

 A DDAP system is composed of two subsystems, 

1. running asynchronously in parallel, 

2. (part of) the inputs of the dependent subsystem are provided 

by the other subsystem

P Q 𝑂𝑈𝑇𝑄𝐼𝑁𝑃

𝐷 = 𝑂𝑈𝑇𝑃⋂𝐼𝑁𝑄 𝐷 ≠ ∅Q depends on P: dependency set D

𝑆𝑃
0, 𝑆, 𝑇𝑃, 𝐿𝑃 𝑆𝑄

0, 𝑆, 𝑇𝑄, 𝐿𝑄

𝐼𝑁𝑄
𝑂𝑈𝑇𝑃



DDAP example 
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 A safelock composed by two locks working in sequence

 Each combination digit is a lock

 It becomes unlocked if the two locks are unlocked

 The combination is 42

lockP

+

-

upP

downP

lockQ

+

-

upQ

downQ

unlockedP

=4?

unlockedQ

=2?



For a DDAP K = 𝑃, 𝑄
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 input set is the union of the inputs (except D): 

 𝐼𝑁𝐾 = 𝐼𝑁𝑃 ∪ 𝐼𝑁𝑄\𝐷

 input sequence:

 𝐽0, ⋯ , 𝐽𝑛, ⋯ with 𝐽𝑘 ∈ 𝒫(𝐼𝑁𝐾)

 trace:

 such that  

 𝑝0 ∈ 𝑆𝑃
0 and 𝑞0 ∈ 𝑆𝑄

0

 𝑝𝑖 , 𝐽𝑖⋂𝐼𝑁𝑃 , 𝑝𝑖+1 ∈ 𝑇𝑃 ∧ 𝑞𝑖 = 𝑞𝑖+1⊕

𝑝𝑖= 𝑝𝑖+1∧ 𝑞𝑖 , 𝐽𝑖⋂𝐼𝑁𝑄 ∪ 𝐿(𝑝𝑖)⋂𝐷, 𝑞𝑖+1 ∈ 𝑇𝑄

(𝑝0, 𝑞0)
𝐽0 (𝑝1, 𝑞1) (𝑝𝑛, 𝑞𝑛)

𝐽𝑛 (𝑝𝑛+1, 𝑞𝑛+1)
either the component P moves from 𝑝𝑖 to 𝑝𝑖+1

and Q remains still in state 𝑞𝑖 = 𝑞𝑖+1 , or 

component Q moves from 𝑞𝑖 to 𝑞𝑖+1 and P 

remains still in state 𝑝𝑖 = 𝑝𝑖+1

When Q moves, it reads some of its 

inputs from the outputs of P



Safelock trace example
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 𝐼𝑁𝑆𝑎𝑓𝑒𝐿𝑜𝑐𝑘= {upP, downP, upQ , downQ }

 Trace in which the lock is unlocked:

(0,0)
{𝑢𝑝𝑃}

(1,0)
{𝑢𝑝𝑃}

(2,0)
{𝑢𝑝𝑃}

(3,0)

{𝑢𝑝𝑄}
(4,1)

{𝑢𝑝𝑄}
(𝟒, 𝟐)

{𝑢𝑝𝑃}

(4,0)

P runs

Q runs

red state when the lock is unlocked



Test Generation for DDAP systems
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 We propose an abstraction that exploits dependency 
between inputs and outputs to decompose the complete 
system

 The proposed test generation approach consists in 
generating two tests, one over Q and one P, and merging 
them later.

 Since model checkers suffer exponentially from the size of the 
system, decomposition brings an exponential gain and allows to 
test large systems.

 Assume that the test predicate refers to Q

 If it refers to P, COI abstraction is enough



Step 1: build a test for Q
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 Given a test predicate tpQ for Q 

 Consider only Q and ignore P

 Compute the necessary input sequence to obtain the 

desired test case (witness for tpQ)

Q𝐼𝑁𝑄 𝑂𝑈𝑇𝑄P𝐼𝑁𝑃
𝑂𝑈𝑇𝑃

𝐼𝑁𝑄
𝑂𝑈𝑇𝑃

Input sequence for Q

tpQ



Step1. Formally: a witness for tpQ
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 We compute its witness by asking the model checker for 

a counterexample for the trap property ¬tpQ

 The witness is a finite trace of Q, 𝑡𝑒𝑠𝑡𝑄:

𝑞0
𝐼𝑄0 𝑞1 𝑞2

𝐼𝑄𝑚−1 𝑞𝑚
𝐼𝑄1

 𝐼𝑄𝑗 ⊆ 𝐼𝑁𝑄 is the set of inputs of Q applied at state 𝑞𝑗

 Parts of inputs come from P (those in the dependency set): 𝐼𝑄𝑗 ∩ 𝐷



Example SafeLock – Step 1
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 Test goal: the lock becomes unlocked

 Ignore lockP and build a test for lockQ

lockQ
+

-

upQ

downQ

unlockedP

lockP
+

-

upP

downP

=4?

unlockedQ

=2?

{𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃, 𝑢𝑝𝑄}
(1) (2)(0)
{𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃, 𝑢𝑝𝑄}

F(unlockedQ)



Step 2: transform the trace for P
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 The input sequence for Q must be transformed to a 

sequence of outputs for P

𝑡𝑒𝑠𝑡𝑄
Input

sequence

for Q

P𝐼𝑁𝑃 𝑂𝑈𝑇𝑃

𝑠𝑒𝑞𝑃
Output

sequence

of P



Step 2. Split 𝑡𝑒𝑠𝑡𝑄
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 We split the sequence 𝑡𝑒𝑠𝑡𝑄 in subsequences

𝜎𝑖 𝑖 = 0,… , 𝑛 such that atomic propositions of the 

dependency set remain unchanged:  

𝑞0

𝜎0

𝐼𝑄0 𝑞1 𝑞𝑘1

𝐼𝑄𝑗⋂𝐷 = 𝐷0

𝐼𝑄𝑘1 𝑞𝑘1+1

𝜎1

𝐼𝑄𝑗⋂𝐷 = 𝐷1

𝑠𝑒𝑞𝑃 = 𝐷0, 𝐷1, … , 𝐷𝑛 constitutes the input sequence part for Q coming 

from P

𝐷2 𝐷𝑛

……



SafeLock – Step 2
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 Transform the test for lockQ to an output sequence for 

lockP

{𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃, 𝑢𝑝𝑄}
(1) (2)(0)
{𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃, 𝑢𝑝𝑄}

𝐷0 = {𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃}

𝑠𝑒𝑞𝑃 = {𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃} Desired output sequence 

for lockP



Step 3: generate the trace for 𝑠𝑒𝑞𝑃
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 To generate a trace for 𝑠𝑒𝑞𝑃 = 𝐷0, 𝐷1, … , 𝐷𝑛 we can 

build a suitable LTL property and find a witness for it 

P𝐼𝑁𝑃 𝑂𝑈𝑇𝑃

𝑠𝑒𝑞𝑃
Output

sequence

of P

Test predicate: 𝑟𝑐𝑃



Step 3: build reachability condition 
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 In order to obtain the output sequence 𝐷0, 𝐷1, … , 𝐷𝑛 for 

P,  we build the LTL formula over the AP of P

𝑟𝑐𝑃 = 𝐅  

𝑑0∈𝐷0

𝑑0 ∧ 𝐅 ⋯𝐅  

𝑑𝑛∈𝐷𝑛

𝑑𝑛

𝑟𝑐𝑃 requires that n + 1 subsequent states exist, in which P 

produces the output values 𝐷𝑖 requested by Q to start the 

computation 𝜎𝑖



SafeLock – Step 3
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 Transform the test for lockQ to a test property for lockP

𝑠𝑒𝑞𝑃 = {𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃}

Test property for lockP:

F(unlockedP)



Step 4. build the test for P
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 The witness of 𝑟𝑐𝑃 is 𝑡𝑒𝑠𝑡𝑃

P𝐼𝑁𝑃 𝑂𝑈𝑇𝑃

Output sequence of P

𝑟𝑐𝑃

𝑡𝑒𝑠𝑡𝑃: Input sequence of P



SafeLock – Step 4
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 Build a test for lockP

unlockedP

lockP
+

-
upP

downP

=4?

F(unlockedP)

(0)
{𝑢𝑝𝑃}
(1)
{𝑢𝑝𝑃}
(2)
{𝑢𝑝𝑃}
(3)
{𝑢𝑝𝑃}
(𝟒)

witness



Step 5: build the test for K
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 Merge testP and testQ in order to obtain a test for K

 Details in the paper

P𝐼𝑁𝑃

Output

sequence of P

𝑡𝑒𝑠𝑡𝑃: Input

sequence of P

Q 𝑂𝑈𝑇𝑄𝑂𝑈𝑇𝑃
𝐼𝑁𝑄

𝑂𝑈𝑇𝑃

𝑡𝑒𝑠𝑡𝑄 Input

sequence for Q

tpQ

Test for K



Soundness and Completeness
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 The proposed approach is:

 SOUND: if a test is found, it is a valid test for K

 INCOMPLETE: a test that could be found using the 

whole system, it may not be found using the proposed 

decomposition



Initial Experiments for n-SafeLock

Memory Time
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 the required memory grows 
exponentially if we consider 
the whole system, whereas, 
using the abstraction, it 
grows linearly.

 The same for the time

 Except that for small N, 

the whole system takes 

less time.



Conclusions

 Systems composed by several subsystems

 running asynchronously in parallel

 connected together in a way that (part of) the inputs 

of one subsystem are provided by another 

subsystem. 

 Proposed abstraction: split the systems, generate 

the tests and merge together.

 Exponential gain in terms of state space

 Proved correct (details in the paper)

 But incomplete

 It can be generalized to n-subcomponents
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