
An Abstraction Technique for

Testing Decomposable Systems by

Model Checking

Paolo Arcaini - University of Bergamo, Italy

Angelo Gargantini - University of Bergamo, Italy

Elvinia Riccobene - University of Milan, Italy

8th International Conference on Tests & Proofs

July 24 - July 25, 2014, York, UK

Outline

1. Kripke structures with inputs

2. Model checking for test generation

 Using counterexample/witness as test

 State explosion problem

3. DDAP - Decomposable by Dependency Asynchronous

Parallel systems

4. An abstraction for test generation using model checking

for DDAPs

5. Some experiments

 Using NuSMV – it well supports Kripke structures with inputs

and for processes running in parallel

24/7/2014 TAP2 Gargantini - An Abstraction Technique for Testing Decomposable Systems

Kripke structures with inputs

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems3

 A Kripke structure with inputs is a 6-tuple

M = 𝑆, 𝑆0, 𝐼𝑁, 𝑂𝑈𝑇, 𝑇, 𝐿

 𝑆 is a set of states; 𝑆0⊆ 𝑆 is the set of initial states;

 𝐼𝑁 and 𝑂𝑈𝑇 are disjoint sets of atomic propositions;

 𝑇 ⊆ 𝑆 × 𝒫(𝐼𝑁) × 𝑆 is the transition relation;

 given a state 𝑠 and the applied inputs 𝐼, the structure moves to a state 𝑠′,
such that (𝑠, 𝐼, 𝑠’) ∈ 𝑇.

 𝐿: 𝑆 → 𝒫(𝑂𝑈𝑇) is the proposition labeling function.

 The set of atomic propositions is 𝐴𝑃 = 𝐼𝑁 ∪ 𝑂𝑈𝑇 and CTL/LTL
formulae are defined over 𝐴𝑃

 Kripke structure with inputs differ from classical Kripke structures because
the inputs are not part of the state and cannot be modified by M (but they are
equivalent)

Kripke structures with inputs

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems4

 Input sequence: 𝐼0, ⋯ , 𝐼𝑛, ⋯ with 𝐼𝑘 ∈ 𝒫(𝐼𝑁)

 Trace:

such that

 𝑠0 ∈ 𝑆
0 and

 (𝑠𝑖 , 𝐼𝑖 , 𝑠𝑖+1) ∈ 𝑇

 Test: a test is a finite trace

IN OUT

s s’

I

(s,I,s’) ∈ T

𝑠0
𝐼0 𝑠1

𝐼1 𝑠𝑖
𝐼𝑖 𝑠𝑖+1𝑠2

Test generation by model checking

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems5

 Test predicate: A test predicate is a formula over the

model, and determines if a particular testing goal is

reached.

 Example:

 Conditional statement

if C then …

 If one wants to cover a case in which C is true

 LTL test predicate: F(C)

MC for test generation

SPECIFICATION

Test

predicates

Model

checker

Counter

example
Trap

property

never(tp)

Test Suite

generator

Cex =

witness of tp=

sequence of

states that

covers tp

= test

Coverage

Criteria

Test + coverage

info

Test suite

24/7/2014 TAP6 Gargantini - An Abstraction Technique for Testing Decomposable Systems

Test generation by model checking

 Model checking for model-based tests generation is a well

established research technique

 [FAW09] reviewed 140 papers

 [GH99] and [ABM98] have around 400 citations

 several notations, systems, coverage criteria (data flow, structural,

mutation, …) and using several model checkers

 [FAW09] Fraser, Ammann, and Wotawa. Testing with Model Checkers: A Survey.

Journal for Software Testing, Verification and Reliability, 2009

 [GH99] Gargantini, Heitmeyer. Using model checking to generate tests from

requirements specifications. FSE/ESEC, 1999

 [ABM98] Ammann, Black, Majurski. Using model checking to generate tests from

specifications. Formal Engineering Methods, 1998

 Several commercial tools are based on model checking

techniques (like mathworks)

24/7/2014 TAP7 Gargantini - An Abstraction Technique for Testing Decomposable Systems

Some limits

1. Trap property proved false

Cex found

2. Trap property proved true

Test predicate infeasible

3. MC does neither complete the

proof nor finds the counter

example

 Out of memory (state explosion

problem)

Model

checker

Trap

property

never(tp)

24/7/2014 TAP8 Gargantini - An Abstraction Technique for Testing Decomposable Systems

Main problem: scalability

 Model checker (symbolically) explores the entire state

space

 It suffers from the state explosion problem

 A combinatorial blow up of the state-space

 It limits its usability

 Are there particular classes of systems which can be

abstracted for test generation?

 Sequential nets of abstract state machines, ABZ 2012

 with information passing, Science of Computer Programming,

2014

 Running in parallel?

24/7/2014 TAP9 Gargantini - An Abstraction Technique for Testing Decomposable Systems

DDAP systems

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems10

 Decomposable by Dependency Asynchronous Parallel

systems (DDAP) systems.

 A DDAP system is composed of two subsystems,

1. running asynchronously in parallel,

2. (part of) the inputs of the dependent subsystem are provided

by the other subsystem

P Q 𝑂𝑈𝑇𝑄𝐼𝑁𝑃

𝐷 = 𝑂𝑈𝑇𝑃⋂𝐼𝑁𝑄 𝐷 ≠ ∅Q depends on P: dependency set D

𝑆𝑃
0, 𝑆, 𝑇𝑃, 𝐿𝑃 𝑆𝑄

0, 𝑆, 𝑇𝑄, 𝐿𝑄

𝐼𝑁𝑄
𝑂𝑈𝑇𝑃

DDAP example

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems11

 A safelock composed by two locks working in sequence

 Each combination digit is a lock

 It becomes unlocked if the two locks are unlocked

 The combination is 42

lockP

+

-

upP

downP

lockQ

+

-

upQ

downQ

unlockedP

=4?

unlockedQ

=2?

For a DDAP K = 𝑃, 𝑄

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems12

 input set is the union of the inputs (except D):

 𝐼𝑁𝐾 = 𝐼𝑁𝑃 ∪ 𝐼𝑁𝑄\𝐷

 input sequence:

 𝐽0, ⋯ , 𝐽𝑛, ⋯ with 𝐽𝑘 ∈ 𝒫(𝐼𝑁𝐾)

 trace:

 such that

 𝑝0 ∈ 𝑆𝑃
0 and 𝑞0 ∈ 𝑆𝑄

0

 𝑝𝑖 , 𝐽𝑖⋂𝐼𝑁𝑃 , 𝑝𝑖+1 ∈ 𝑇𝑃 ∧ 𝑞𝑖 = 𝑞𝑖+1⊕

𝑝𝑖= 𝑝𝑖+1∧ 𝑞𝑖 , 𝐽𝑖⋂𝐼𝑁𝑄 ∪ 𝐿(𝑝𝑖)⋂𝐷, 𝑞𝑖+1 ∈ 𝑇𝑄

(𝑝0, 𝑞0)
𝐽0 (𝑝1, 𝑞1) (𝑝𝑛, 𝑞𝑛)

𝐽𝑛 (𝑝𝑛+1, 𝑞𝑛+1)
either the component P moves from 𝑝𝑖 to 𝑝𝑖+1

and Q remains still in state 𝑞𝑖 = 𝑞𝑖+1 , or

component Q moves from 𝑞𝑖 to 𝑞𝑖+1 and P

remains still in state 𝑝𝑖 = 𝑝𝑖+1

When Q moves, it reads some of its

inputs from the outputs of P

Safelock trace example

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems13

 𝐼𝑁𝑆𝑎𝑓𝑒𝐿𝑜𝑐𝑘= {upP, downP, upQ , downQ }

 Trace in which the lock is unlocked:

(0,0)
{𝑢𝑝𝑃}

(1,0)
{𝑢𝑝𝑃}

(2,0)
{𝑢𝑝𝑃}

(3,0)

{𝑢𝑝𝑄}
(4,1)

{𝑢𝑝𝑄}
(𝟒, 𝟐)

{𝑢𝑝𝑃}

(4,0)

P runs

Q runs

red state when the lock is unlocked

Test Generation for DDAP systems

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems14

 We propose an abstraction that exploits dependency
between inputs and outputs to decompose the complete
system

 The proposed test generation approach consists in
generating two tests, one over Q and one P, and merging
them later.

 Since model checkers suffer exponentially from the size of the
system, decomposition brings an exponential gain and allows to
test large systems.

 Assume that the test predicate refers to Q

 If it refers to P, COI abstraction is enough

Step 1: build a test for Q

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems15

 Given a test predicate tpQ for Q

 Consider only Q and ignore P

 Compute the necessary input sequence to obtain the

desired test case (witness for tpQ)

Q𝐼𝑁𝑄 𝑂𝑈𝑇𝑄P𝐼𝑁𝑃
𝑂𝑈𝑇𝑃

𝐼𝑁𝑄
𝑂𝑈𝑇𝑃

Input sequence for Q

tpQ

Step1. Formally: a witness for tpQ

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems16

 We compute its witness by asking the model checker for

a counterexample for the trap property ¬tpQ

 The witness is a finite trace of Q, 𝑡𝑒𝑠𝑡𝑄:

𝑞0
𝐼𝑄0 𝑞1 𝑞2

𝐼𝑄𝑚−1 𝑞𝑚
𝐼𝑄1

 𝐼𝑄𝑗 ⊆ 𝐼𝑁𝑄 is the set of inputs of Q applied at state 𝑞𝑗

 Parts of inputs come from P (those in the dependency set): 𝐼𝑄𝑗 ∩ 𝐷

Example SafeLock – Step 1

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems17

 Test goal: the lock becomes unlocked

 Ignore lockP and build a test for lockQ

lockQ
+

-

upQ

downQ

unlockedP

lockP
+

-

upP

downP

=4?

unlockedQ

=2?

{𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃, 𝑢𝑝𝑄}
(1) (2)(0)
{𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃, 𝑢𝑝𝑄}

F(unlockedQ)

Step 2: transform the trace for P

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems18

 The input sequence for Q must be transformed to a

sequence of outputs for P

𝑡𝑒𝑠𝑡𝑄
Input

sequence

for Q

P𝐼𝑁𝑃 𝑂𝑈𝑇𝑃

𝑠𝑒𝑞𝑃
Output

sequence

of P

Step 2. Split 𝑡𝑒𝑠𝑡𝑄

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems19

 We split the sequence 𝑡𝑒𝑠𝑡𝑄 in subsequences

𝜎𝑖 𝑖 = 0,… , 𝑛 such that atomic propositions of the

dependency set remain unchanged:

𝑞0

𝜎0

𝐼𝑄0 𝑞1 𝑞𝑘1

𝐼𝑄𝑗⋂𝐷 = 𝐷0

𝐼𝑄𝑘1 𝑞𝑘1+1

𝜎1

𝐼𝑄𝑗⋂𝐷 = 𝐷1

𝑠𝑒𝑞𝑃 = 𝐷0, 𝐷1, … , 𝐷𝑛 constitutes the input sequence part for Q coming

from P

𝐷2 𝐷𝑛

……

SafeLock – Step 2

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems20

 Transform the test for lockQ to an output sequence for

lockP

{𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃, 𝑢𝑝𝑄}
(1) (2)(0)
{𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃, 𝑢𝑝𝑄}

𝐷0 = {𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃}

𝑠𝑒𝑞𝑃 = {𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃} Desired output sequence

for lockP

Step 3: generate the trace for 𝑠𝑒𝑞𝑃

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems21

 To generate a trace for 𝑠𝑒𝑞𝑃 = 𝐷0, 𝐷1, … , 𝐷𝑛 we can

build a suitable LTL property and find a witness for it

P𝐼𝑁𝑃 𝑂𝑈𝑇𝑃

𝑠𝑒𝑞𝑃
Output

sequence

of P

Test predicate: 𝑟𝑐𝑃

Step 3: build reachability condition

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems22

 In order to obtain the output sequence 𝐷0, 𝐷1, … , 𝐷𝑛 for

P, we build the LTL formula over the AP of P

𝑟𝑐𝑃 = 𝐅

𝑑0∈𝐷0

𝑑0 ∧ 𝐅 ⋯𝐅

𝑑𝑛∈𝐷𝑛

𝑑𝑛

𝑟𝑐𝑃 requires that n + 1 subsequent states exist, in which P

produces the output values 𝐷𝑖 requested by Q to start the

computation 𝜎𝑖

SafeLock – Step 3

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems23

 Transform the test for lockQ to a test property for lockP

𝑠𝑒𝑞𝑃 = {𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑃}

Test property for lockP:

F(unlockedP)

Step 4. build the test for P

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems24

 The witness of 𝑟𝑐𝑃 is 𝑡𝑒𝑠𝑡𝑃

P𝐼𝑁𝑃 𝑂𝑈𝑇𝑃

Output sequence of P

𝑟𝑐𝑃

𝑡𝑒𝑠𝑡𝑃: Input sequence of P

SafeLock – Step 4

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems25

 Build a test for lockP

unlockedP

lockP
+

-
upP

downP

=4?

F(unlockedP)

(0)
{𝑢𝑝𝑃}
(1)
{𝑢𝑝𝑃}
(2)
{𝑢𝑝𝑃}
(3)
{𝑢𝑝𝑃}
(𝟒)

witness

Step 5: build the test for K

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems26

 Merge testP and testQ in order to obtain a test for K

 Details in the paper

P𝐼𝑁𝑃

Output

sequence of P

𝑡𝑒𝑠𝑡𝑃: Input

sequence of P

Q 𝑂𝑈𝑇𝑄𝑂𝑈𝑇𝑃
𝐼𝑁𝑄

𝑂𝑈𝑇𝑃

𝑡𝑒𝑠𝑡𝑄 Input

sequence for Q

tpQ

Test for K

Soundness and Completeness

24/7/2014 TAPGargantini - An Abstraction Technique for Testing Decomposable Systems27

 The proposed approach is:

 SOUND: if a test is found, it is a valid test for K

 INCOMPLETE: a test that could be found using the

whole system, it may not be found using the proposed

decomposition

Initial Experiments for n-SafeLock

Memory Time

24/7/2014 TAPGargantini - An Abstraction Technique for

Testing Decomposable Systems

29

 the required memory grows
exponentially if we consider
the whole system, whereas,
using the abstraction, it
grows linearly.

 The same for the time

 Except that for small N,

the whole system takes

less time.

Conclusions

 Systems composed by several subsystems

 running asynchronously in parallel

 connected together in a way that (part of) the inputs

of one subsystem are provided by another

subsystem.

 Proposed abstraction: split the systems, generate

the tests and merge together.

 Exponential gain in terms of state space

 Proved correct (details in the paper)

 But incomplete

 It can be generalized to n-subcomponents

24/7/2014 TAP30 Gargantini - An Abstraction Technique for Testing Decomposable Systems

